

© Detlef Sprinz, 2024

Goals

- Why use simulation in the social sciences?
- The Predictioneer's Game: logic & overview
- Case: Predicting Paris

Modeling Political Decisions for Sustainability - Prof. Detlef F. Sprinz, Ph.D.

23.10.2024

Recap

- Best responses (to each other actor)
- Actors: Who?
- Position: What (they want)?

Modeling Political Decisions for Sustainability – Prof. Detlef F. Sprinz, Ph.D.

- Salience: How important?
- Influence: How much potential influence?
- Flexibility (Resolve): How flexible?
- Veto: Legal or formal right to induce the status quo ante?

23.10.2024

© Detlef Sprinz, 2024

Bayes Rule

Bayes' theorem yields

Modeling Political Decisions for Sustainability - Prof. Detlef F. Sprinz, Ph.D.

$$P(\mathcal{H}_+|\mathcal{T}_+) = \frac{P(\mathcal{T}_+|\mathcal{H}_+)P(\mathcal{H}_+)}{P(\mathcal{T}_+)} = \frac{0.99 \cdot 0.005}{0.99 \cdot 0.005 + 0.02 \cdot 0.995} = 0.19920 \approx 20\%$$

Now we redo this calculation using a Bayesian update table:

		Bayes		
hypothesis	prior	likelihood	numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{T}_+ \mathcal{H})$	$P(\mathcal{T}_+ \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{T}_+)$
\mathcal{H}_+	0.005	0.99	0.00495	0.19920
\mathcal{H}_{-}	0.995	0.02	0.01990	0.80080
total	1	NO SUM	0.02485	1

The table shows that the posterior probability $P(\mathcal{H}_+|\mathcal{T}_+)$ that a person with a positive test has the disease is about 20%. This is far less than the sensitivity of the test (99%) but much higher than the prevalence of the disease in the general population (0.5%).

source: https://ocw.mit.edu/courses/mathem atics/18-05-introduction-toprobability-and-statistics-spring-2014/readings/MIT18_05S14_Readin g11.pdf

23.10.2024