
Elisabeth Robson & Eric FreemanPaul Barry

A Brain-Friendly Guide

Head First

Python
Model data as
lists, tuples,
sets, and
dictionaries

Objects?
Decorators?

Generators?
They’re all here.

Load important Python
concepts directly into

your brain

Create a modern
webapp with Flask

Share your code
with modules

Don’t get
in a pickle:

use DB-API
instead

2nd
Edition

Covers Python 3

Beijing • Boston • Farnham • Sebastopol • Tokyo

Head First Python

Wouldn’t it be dreamy if there
were a Python book that didn’t

make you wish you were anywhere
other than stuck in front of your
computer writing code? I guess it’s

just a fantasy...

Paul Barry

Second Edition

Head First Python, Second Edition
by Paul Barry

Copyright © 2017 Paul Barry. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Editor:			 Dawn Schanafelt

Cover Designer:		 Randy Comer

Production Editor:		 Melanie Yarbrough

Proofreader:			 Rachel Monaghan

Indexer:			 Lucie Haskins

Head First Logo:		 Eric Freeman

Page Viewers:	 	 Deirdre, Joseph, Aaron, and Aideen

Printing History:
November 2010: First edition.
November 2016: Second edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Python, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No weblogs were inappropriately searched in the making of this book, and the photos on this page (as well as the
one on the author page) were supplied by Aideen Barry.

ISBN: 978-1-491-91953-8

[GP] [2020-09-25]

Deirdre

Joseph

Aaron

Aideen

I continue to dedicate this book to all those
generous people in the Python community who
continue to help make Python what it is today.

And to all those that made learning Python and
its technologies just complex enough that people
need a book like this to learn it.

viii

the author

Author of Head First Python, 2nd Edit ion

Paul Barry lives and works in Carlow, Ireland, which
is a small town of 35,000 people or so, located just over
80km southwest of the nation’s capital: Dublin.

Paul has a B.Sc. in Information Systems, as well as an M.Sc.
in Computing. He also has a postgraduate qualification in
Learning and Teaching.

Paul has worked at The Institute of Technology, Carlow
since 1995, and lectured there since 1997. Prior to
becoming involved in teaching, Paul spent a decade in
the IT industry working in Ireland and Canada, with the
majority of his work within a healthcare setting. Paul is
married to Deirdre, and they have three children (two of
whom are now in college).

The Python programming language (and its related
technologies) has formed an integral part of Paul’s
undergraduate courses since the 2007 academic year.

Paul is the author (or coauthor) of four other technical
books: two on Python and two on Perl. In the past, he’s
written a heap of material for Linux Journal Magazine,
where he was a contributing editor.

Paul was raised in Belfast, Northern Ireland, which may go
some of the way toward explaining his take on things
as well as his funny accent (unless, of course, you’re also
from “The North,” in which case Paul’s outlook and
accent are perfectly normal).

Find Paul on Twitter (@barrypj), as well as at his home on
the Web: http://paulbarry.itcarlow.ie.

While out walking,
Paul pauses to
discuss the correct
pronunciation of the
word “tuple” with his
long-suffering wife.

This is
Deirdre’s usual
reaction. §

http://paulbarry.itcarlow.ie

table of contents

x

the basics

Getting Started Quickly
Get going with Python programming as quickly as possible.�
In this chapter, we introduce the basics of programming in Python, and we do this in

typical Head First style: by jumping right in. After just a few pages, you’ll have run

your first sample program. By the end of the chapter, you’ll not only be able to run the

sample program, but you’ll understand its code too (and more besides). Along the way,

you’ll learn about a few of the things that make Python the programming language it is.

Understanding IDLE’s Windows					 4

Executing Code, One Statement at a Time				 8

Functions + Modules = The Standard Library			 9

Data Structures Come Built-in					 13

Invoking Methods Obtains Results					 14

Deciding When to Run Blocks of Code				 15

What “else” Can You Have with “if ”?				 17

Suites Can Contain Embedded Suites				 18

Returning to the Python Shell					 22

Experimenting at the Shell						 23

Iterating Over a Sequence of Objects				 24

Iterating a Specific Number of Times				 25

Applying the Outcome of Task #1 to Our Code			 26

Arranging to Pause Execution					 28

Generating Random Integers with Python				 30

Coding a Serious Business Application				 38

Is Indentation Driving You Crazy?					 40

Asking the Interpreter for Help on a Function			 41

Experimenting with Ranges					 42

Chapter 1’s Code							 46

1

table of contents

xi

list data

Working with Data
All programs process data, and Python programs are no exception.�
In fact, take a look around: data is everywhere. A lot of, if not most, programming is all about

data: acquiring data, processing data, understanding data. To work with data effectively, you need

somewhere to put your data when processing it. Python shines in this regard, thanks (in no small

part) to its inclusion of a handful of widely applicable data structures: lists, dictionaries, tuples, and

sets. In this chapter, we’ll preview all four, before spending the majority of this chapter digging deeper

into lists (and we’ll deep-dive into the other three in the next chapter). We’re covering these data

structures early, as most of what you’ll likely do with Python will revolve around working with data.

0

D
-12

1

o
-11

2

n
-10

3

'
-9

4

t
-8

5

-7

6

p
-6

7

a
-5

8

n
-4

9

i
-3

10

c
-2

11

!
-1

Numbers, Strings...and Objects						 48

Meet the Four Built-in Data Structures					 50

An Unordered Data Structure: Dictionary					 52

A Data Structure That Avoids Duplicates: Set				 53

Creating Lists Literally							 55

Use Your Editor When Working on More Than a Few Lines of Code		 57

“Growing” a List at Runtime						 58

Checking for Membership with “in”					 59

Removing Objects from a List						 62

Extending a List with Objects						 64

Inserting an Object into a List						 65

How to Copy a Data Structure						 73

Lists Extend the Square Bracket Notation					 75

Lists Understand Start, Stop, and Step					 76

Starting and Stopping with Lists						 78

Putting Slices to Work on Lists						 80

Python’s “for” Loop Understands Lists					 86

Marvin’s Slices in Detail							 88

When Not to Use Lists							 91

Chapter 2’s Code, 1 of 2							 92

2

table of contents

xii

Name: Ford Prefect
Gender: Male
Occupation: Researcher
Home Planet: Betelgeuse Seven

structured data

Working with Structured Data
Python’s list data structure is great, but it isn’t a data
panacea.� When you have truly structured data (and using a list to store it may not be

the best choice), Python comes to your rescue with its built-in dictionary. Out of the box,

the dictionary lets you store and manipulate any collection of key/value pairs. We look

long and hard at Python’s dictionary in this chapter, and—along the way—meet set and

tuple, too. Together with the list (which we met in the previous chapter), the dictionary,

set, and tuple data structures provide a set of built-in data tools that help to make Python

and data a powerful combination.

A Dictionary Stores Key/Value Pairs			 96

How to Spot a Dictionary in Code				 98

Insertion Order Is NOT Maintained			 99

Value Lookup with Square Brackets				 100

Working with Dictionaries at Runtime			 101

Updating a Frequency Counter				 105

Iterating Over a Dictionary				 107

Iterating Over Keys and Values				 108

Iterating Over a Dictionary with “items”			 110

Just How Dynamic Are Dictionaries?			 114

Avoiding KeyErrors at Runtime				 116

Checking for Membership with “in”			 117

Ensuring Initialization Before Use				 118

Substituting “not in” for “in”				 119

Putting the “setdefault” Method to Work			 120

Creating Sets Efficiently					 124

Taking Advantage of Set Methods				 125

Making the Case for Tuples				 132

Combining the Built-in Data Structures			 135

Accessing a Complex Data Structure’s Data			 141

Chapter 3’s Code, 1 of 2					 143

3

table of contents

xiii

module

code reuse

Functions and Modules
Reusing code is key to building a maintainable system.�
And when it comes to reusing code in Python, it all starts and ends with the humble

function. Take some lines of code, give them a name, and you’ve got a function (which

can be reused). Take a collection of functions and package them as a file, and you’ve

got a module (which can also be reused). It’s true what they say: it’s good to share, and

by the end of this chapter, you’ll be well on your way to sharing and reusing your code,

thanks to an understanding of how Python’s functions and modules work.

Reusing Code with Functions				 146

Introducing Functions					 147

Invoking Your Function					 150

Functions Can Accept Arguments				 154

Returning One Value					 158

Returning More Than One Value				 159

Recalling the Built-in Data Structures			 161

Making a Generically Useful Function			 165

Creating Another Function, 1 of 3				 166

Specifying Default Values for Arguments			 170

Positional Versus Keyword Assignment			 171

Updating What We Know About Functions			 172

Running Python from the Command Line			 175

Creating the Required Setup Files				 179

Creating the Distribution File				 180

Installing Packages with “pip”				 182

Demonstrating Call-by-Value Semantics			 185

Demonstrating Call-by-Reference Semantics			 186

Install the Testing Developer Tools				 190

How PEP 8–Compliant Is Our Code?			 191

Understanding the Failure Messages			 192

Chapter 4’s Programs					 194

4

xxviixxvii

the howto

how to use this book

Intro

In this section, we answer the burning question:
“So why DID they put that in a Python book?”

I can’t believe
they put that in a

Python book.

xxviii   intro

how to use this book

Who Is This Book For?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card… we’ll accept a check, too.]

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

3

Do you wish you had the know-how to program Python,
add it to your list of tools, and make it do new things?

2

Are you looking for a reference book to Python, one that
covers all the details in excruciating detail?

2

Do you already know how to program in another
programming language?

1

Do you already know most of what you need to know to
program with Python?

1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Python book should cover everything and if it
bores the reader to tears in the process, then so much
the better?

3

This is NOT a
reference book,
and we assume
you’ve programmed
before.

intro   xxix

the intro

“How can this be a serious Python book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously nonimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those “party” photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

We Know What You’re Thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 450
more dull, dry,
boring pages.

xxx   intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner party

companion or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m more technical than

thou” Bob from engineering doesn’t.

intro   xxxi

the intro

Metacognition: Thinking About Thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to solve programming problems with Python. And you probably don’t want to
spend a lot of time. If you want to use what you read in this book, you need to
remember what you read. And for that, you’ve got to understand it. To get the most
from this book, or any book or learning experience, take responsibility for your
brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well‑being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

xxxii   intro

how to use this book

Here’s What WE Did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and asked questions that don’t always have a
straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, and so on, because, well, you’re a person. And
your brain pays more attention to people than it does to things.

intro   xxxiii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!
There’s only one way to learn to program in Python:
write a lot of code. And that’s what you’re going
to do throughout this book. Coding is a skill, and
the only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it
working before you move on to the next part of the
book.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.
Speaking activates a different part of the brain. If
you’re trying to understand something or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read the “There Are No Dumb Questions”
sections.
That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

xxxiv   intro

how to use this book

Read Me, 1 of 2
This is a learning experience, not a reference book. We deliberately stripped out everything that
might get in the way of learning whatever it is we’re working on at that point in the book. And
the first time through, you need to begin at the beginning, because the book makes assumptions
about what you’ve already seen and learned.

This book is designed to get you up to speed as quickly as possible.

As you need to know stuff, we teach it. So you won’t find long lists of technical material, no
tables of Python’s operators, nor its operator precedence rules. We don’t cover everything, but
we’ve worked really hard to cover the essential material as well as we can, so that you can get
Python into your brain quickly and have it stay there. The only assumption we make is that you
already know how to program in some other programming language.

This book targets Python 3

We use Release 3 of the Python programming language in this book, and we cover how to get
and install Python 3 in Appendix A. This book does not use Python 2.

We put Python to work for you right away.

We get you doing useful stuff in Chapter 1 and build from there. There’s no hanging around,
because we want you to be productive with Python right away.

The activities are NOT optional—you have to do the work.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some
of them are to help with memory, some are for understanding, and some will help you apply
what you’ve learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for the
two lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect all of
the examples to be robust, or even complete—they are written specifically for learning, and
aren’t always fully functional (although we’ve tried to ensure as much as possible that they are).

intro   xxxv

the intro

Yes, there’s more...

This second edition is NOT at all like the first.
This is an update to the first edition of Head First Python, which published late in 2010.
Although that book and this one share the same author, he’s now older and (hopefully)
wiser, and thus, decided to completely rewrite the first edition’s content for this edition.
So...everything is new: the order is different, the content has been updated, the examples
are better, and the stories are either gone or have been replaced. We kept the cover—
with minor amendments—as we figured we didn’t want to rock the boat too much. It’s
been a long six years...we hope you enjoy what we’ve come up with.

Where’s the code?
We’ve placed the code examples on the Web so you can copy and paste them as needed
(although we do recommend that you type in the code as you follow along). You’ll find the
code at these locations:

	 http://bit.ly/head-first-python-2e

	 http://python.itcarlow.ie

Read Me, 2 of 2

http://bit.ly/head-first-python-2e
http://python.itcarlow.ie

xxxvi   intro

the intro

Bill Lubanovic has been a developer and admin for forty years.
He’s also written for O’Reilly: chapters for two Linux security
books, co-authored a Linux admin book, and solo “Introducing
Python”. He lives by a frozen lake in the Sangre de Sasquatch
mountains of Minnesota with one lovely wife, two lovely children,
and three fur-laden cats.

Edward Yue Shung Wong has been hooked on coding since he
wrote his first line of Haskell in 2006. Currently he works on event
driven tradeprocessing in the heart of the City of London. He
enjoys sharing his passion for development with the London Java
Community and Software Craftsmanship Community. Away from
the keyboard, find Edward in his element on a football pitch or
gaming on YouTube (@arkangelofkaos).

Adrienne Lowe is a former personal chef from Atlanta turned
Python developer who shares stories, conference recaps, and recipes
at her cooking and coding blog Coding with Knives (http://
codingwithknives.com). She organizes PyLadiesATL and Django
Girls Atlanta and runs the weekly Django Girls “Your Django
Story” interview series for women in Python. Adrienne works as a
Support Engineer at Emma Inc., as Director of Advancement of
the Django Software Foundation, and is on the core team of Write
the Docs. She prefers a handwritten letter to email and has been
building out her stamp collection since childhood.

Monte Milanuk provided valuable feedback.

The Technical Review Team
Bill

Edward

Adrienne

intro   xxxvii

the intro

My editor: This edition’s editor is Dawn Schanafelt, and this book
is much, much better for Dawn’s involvement. Not only is Dawn a
great editor, but her eye for detail and the right way to express things
has greatly improved what’s written here. O’Reilly Media make a
habit of hiring bright, friendly, capable people, and Dawn is the very
personification of these attributes.

Acknowledgments and Thanks

The O’Reilly Media team: This edition of Head First Python took four years to write (it’s a long story). It’s only
natural, then, that a lot of people from the O’Reilly Media team were involved. Courtney Nash talked me into doing

“a quick rewrite” in 2012, then was on hand as the project’s scope ballooned. Courtney was this edition’s first editor, and
was on hand when disaster struck and it looked like this book was doomed. As things slowly got back on track, Courtney
headed off to bigger and better things within O’Reilly Media, handing over the editing reins in 2014 to the very busy
Meghan Blanchette, who watched (I’m guessing, with mounting horror) as delay piled upon delay, and this book
went on and off the tracks at regular intervals. Things were only just getting back to normal when Meghan went off
to pastures new, and Dawn took over as this book’s editor. That was one year ago, and the bulk of this book’s 12¾
chapters were written under Dawn’s ever-watchful eye. As I mentioned above, O’Reilly Media hires good people, and
Courtney and Meghan’s editing contributions and support are gratefully acknowledged. Elsewhere, thanks are due to
Maureen Spencer, Heather Scherer, Karen Shaner, and Chris Pappas for working away “behind the scenes.”
Thanks, also, to the invisible unsung heroes known as Production, who took my InDesign chapters and turned them
into this finished product. They did a great job.

A shout-out to Bert Bates who, together with Kathy Sierra, created this series of books with their wonderful Head
First Java. Bert spent a lot of time working with me to ensure this edition was firmly pointed in the right direction.

Friends and colleagues: My thanks again to Nigel Whyte (Head of the Department of Computing at the Institute
of Technology, Carlow) for supporting my involvement in this rewrite. Many of my students had a lot of this material
thrust upon them as part of their studies, and I hope they get a chuckle out of seeing one (or more) of their classroom
examples on the printed page.

Thanks once again to David Griffiths (my partner-in-crime on Head First Programming) for telling me at one
particularly low point to stop agonizing over everything and just write the damned thing! It was perfect advice, and it’s
great to know that David, together with Dawn (his wife and Head First coauthor), is only ever an email away. Be sure to
check out David and Dawn’s great Head First books.

Family: My family (wife Deirdre, and children Joseph, Aaron, and Aideen) had to endure four years of ups-and-
downs, fits-and-starts, huffs-and-puffs, and a life-changing experience from which we all managed to come through with
our wits, thankfully, still intact. This book survived, I survived, and our family survived. I’m very thankful and love them
all, and I know I don’t need to say this, but will: I do this for you guys.

The without-whom list: My technical review team did an excellent job: check out their mini-profiles on the previous
page. I considered all of the feedback they gave me, fixed all the errors they found, and was always rather chuffed when
any of them took the time to tell me what a great job I was doing. I’m very grateful to them all.

Dawn

xxxviii   intro

o’reilly safari

O’Reil ly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

this is a new chapter   1

the basics1

Getting Started Quickly

Get going with Python programming as quickly as possible.�
In this chapter, we introduce the basics of programming in Python, and we do this in

typical Head First style: by jumping right in. After just a few pages, you’ll have run your

first sample program. By the end of the chapter, you’ll not only be able to run the sample

program, but you’ll understand its code too (and more besides). Along the way, you’ll learn

about a few of the things that make Python the programming language it is. So, let’s not

waste any more time. Flip the page and let’s get going!

What’s Python? A nonvenomous
snake? A late 1960s comedy troupe?
A programming language? Gosh! It’s
all of these things!

Somebody’s obviously spent
far too many days at sea...

2   Chapter 1

say hello—not!

Breaking with Tradit ion
Pick up almost any book on a programming language, and the first thing
you’ll see is the Hello World example.

I knew it—you’re
starting with “Hello,
World!”, aren’t you?

No, we aren’t.
This is a Head First book, and we do things
differently ’round here. With other books,
there is a tradition to start by showing you
how to write the Hello World program in the
language under consideration. However,
with Python, what you end up with is a
single statement that invokes Python’s
built-in print function, which displays
the traditional “Hello, World!” message
on screen. It’s almost too exciting...and it
teaches you next to nothing.

So, no, we aren’t going to show you the Hello
World program in Python, as there’s really
nothing to learn from it. We’re going to take
a different path...

Start ing with a meat ier example
Our plan for this chapter is to start with an example that’s somewhat larger
and, consequently, more useful than Hello World.

We’ll be right up front and tell you that the example we have is somewhat
contrived: it does do something, but may not be entirely useful in the long run.
That said, we’ve chosen it to provide a vehicle with which to cover a lot of
Python in as short a timespan as possible. And we promise by the time you’ve
worked through the first example program, you’ll know enough to write Hello
World in Python without our help.

you are here 4   3

the basics

Jump Right In
If you haven’t already installed a version of Python 3 on your computer,
pause now and head on over to Appendix A for some step-by-step installation
instructions (it’ll only take a couple minutes, promise).

With the latest Python 3 installed, you’re ready to start programming
Python, and to help with this—for now—we’re going to use Python’s built-in
integrated development environment (IDE).

Python’s IDLE is al l you need to get going
When you install Python 3 on your computer, you also get a very simple yet
usable IDE called IDLE. Although there are many different ways in which to
run Python code (and you’ll meet a lot of them throughout this book), IDLE
is all you need when starting out.

Start IDLE on your computer, then use the File..."New File... menu option to
open a new editing window. When we did this on our computer, we ended up
with two windows: one called the Python Shell and another called Untitled:

Starting IDLE, then
choosing “File..."New
File...” results in two
windows appearing on
screen.

After you select File..."New File..., this window appears. Think of this as the “second window.”

This window pops
up first. Think of
it as the “first
window.”

4   Chapter 1

let’s get going

Understanding IDLE’s Windows
Both of these IDLE windows are important.

The first window, the Python Shell, is a REPL environment used to run
snippets of Python code, typically a single statement at a time. The more
you work with Python, the more you’ll come to love the Python Shell,
and you’ll be using it a lot as you progress through this book. For now,
though, we are more interested in the second window.

The second window, Untitled, is a text editing window that can be used
to write complete Python programs. It’s not the greatest editor in the
world (as that honor goes to <insert your favorite text editor’s name here>), but
IDLE’s editor is quite usable, and has a bunch of modern features built
right in, including color-syntax handling and the like.

As we are jumping right in, let’s go ahead and enter a small Python
program into this window. When you are done typing in the code below,
use the File..."Save... menu option to save your program under the name
odd.py.

Be sure to enter the code exactly as shown here:

Geek Bits

What does REPL mean?

It‘s geek shorthand for “read-
eval-print-loop,” and describes an
interactive programming tool that
lets you experiment with snippets of
code to your heart’s desire. Find out
way more than you need to know by
visiting http://en.wikipedia.org/wiki/
Read-eval-print_loop.

Don’t worry about
what this code
does for now. Just
type it into the
editing window.
Be sure to save it
as “odd.py” before
continuing.

So...now what? If you’re anything like us, you can’t wait to run this code, right?
Let’s do this now. With your code in the edit window (as shown above), press the
F5 key on your keyboard. A number of things can happen...

http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Read-eval-print_loop

you are here 4   5

the basics

What Happens Next...
If your code ran without error, flip over to the next page, and keep going.

If you forgot to save your code before you tried to run it, IDLE complains, as
you have to save any new code to a file first. You’ll see a message similar to
this one if you didn’t save your code:

Click the OK button, then note where IDLE thinks the syntax error is: look
for the large red block in the edit window. Make sure your code matches ours
exactly, save your file again, and then press F5 to ask IDLE to execute your
code once more.

Click the OK button, then provide a name for your file. We’ve chosen odd
as the name for our file, and we’ve added a .py extension (which is a Python
convention well worth adhering to):

If your code now runs (having been saved), flip over to the next page, and keep
going. If, however, you have a syntax error somewhere in your code, you’ll see
this message:

By default, IDLE
won’t run code that
hasn’t been saved.

You are free to use
whatever name you
like for your program,
but it’s probably
best—if you’re
following along—to
stick to the same
name as us.

As you can no doubt
tell, IDLE isn’t great
at stating what the
syntax error is. But
click OK, and a large
red block indicates
where IDLE thinks
the problem is.

6   Chapter 1

pressing F5 works!

Press F5 to Run Your Code
Pressing F5 executes the code in the currently selected IDLE text-editing
window—assuming, of course, that your code doesn’t contain a runtime error.
If you have a runtime error, you’ll see a Traceback error message (in red).
Read the message, then return to the edit window to make sure the code you
entered is exactly the same as ours. Save your amended code, then press F5
again. When we pressed F5, the Python Shell became the active window, and
here’s what we saw:

Depending on what time of day it is, you may have seen the Not an odd minute
message instead. Don’t worry if you did, as this program displays one or the
other message depending on whether your computer’s current time contains
a minute value that’s an odd number (we did say this example was contrived,
didn’t we?). If you wait a minute, then click the edit window to select it, then
press F5 again, your code runs again. You’ll see the other message this time
(assuming you waited the required minute). Feel free to run this code as often
as you like. Here is what we saw when we (very patiently) waited the required
minute:

Pressing F5 while in the
edit window runs your
code, then displays the
resulting output in the
Python Shell.

Let’s spend some time learning how this code runs.

From this point on, we’ll refer to “the IDLE text-editing window” simply as “the edit window.”

Don’t worry if you see a
different message. Read
on to learn why this is.

you are here 4   7

the basics

Code Runs Immediate ly
When IDLE asks Python to run the code in the edit window, Python starts at
the top of the file and begins executing code straightaway.

For those of you coming to Python from one of the C-like languages, note
that there is no notion of a main() function or method in Python. There’s
also no notion of the familiar edit-compile-link-run process. With Python,
you edit your code and save it, and run it immediately.

Hang on a second. You said “IDLE asks
Python to run the code”...but isn’t Python the
programming language and IDLE the IDE? If so,
what’s actually doing the running here?!?

Oh, good catch. That is confusing.
Here’s what you need to know: “Python” is the name given to the
programming language and “IDLE” is the name given to the built-in
Python IDE.

That said, when you install Python 3 on your computer, an interpreter
is installed, too. This is the technology that runs your Python code. Rather
confusingly, this interpreter is also known by the name “Python.” By
right, everyone should use the more correct name when referring to this
technology, which is to call it “the Python interpreter.” But, alas, nobody
ever does.

Starting this very second, in this book, we’ll use the word “Python”
to refer to the language, and the word “interpreter” to refer to the
technology that runs your Python code. “IDLE” refers to the IDE, which
takes your Python code and runs it through the interpreter. It’s the
interpreter that does all the actual work here.

Q: Is the Python interpreter something like the Java VM?

A: Yes and no. Yes, in that the interpreter runs your code. But
no, in how it does it. In Python, there’s no real notion of your source
code being compiled into an “executable.” Unlike the Java VM, the
interpreter doesn’t run .class files, it just runs your code.

Q: But, surely, compilation has to happen at some stage?

A: Yes, it does, but the interpreter does not expose this process
to the Python programmer (you). All of the details are taken care of
for you. All you see is your code running as IDLE does all the heavy
lifting, interacting with the interpreter on your behalf. We’ll talk more
about this process as this book progresses.

8   Chapter 1

step by step

Execut ing Code, One Statement at a Time
Here is the program code from page 4 again:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Let’s be the Python interpreter
Let’s take some time to run through this code in much the same way that the
interpreter does, line by line, from the top of the file to the bottom.

The first line of code imports some preexisting functionality from Python’s
standard library, which is a large stock of software modules providing lots
of prebuilt (and high-quality) reusable code.

In our code, we specifically request one submodule from the standard
library’s datetime module. The fact that the submodule is also called
datetime is confusing, but that’s how this works. The datetime
submodule provides a mechanism to work out the time, as you’ll see over the
next few pages.

This is the
name of the
submodule.

This is the name of the standard library module to import the reusable code from.

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

		 ...

Remember: the interpreter starts at the top of the file and works down toward the bottom, executing each line of Python code as it goes.

Think of modules
as a collection of
related functions.

In this book, when we want you to pay particular
attention to a line of code, we highlight it (just
like we did here).

you are here 4   9

the basics

Funct ions + Modules = The Standard Library
Python’s standard library is very rich, and provides a lot of reusable code.

Let’s look at another module, called os, which provides a platform-independent way
to interact with your underlying operating system (we’ll return to the datetime
module in a moment). Let’s concentrate on just one provided function, getcwd,
which—when invoked—returns your current working directory.

Here’s how you’d typically import, then invoke, this function within a Python program:

from os import getcwd

where_am_I = getcwd()Import the function
from its module...

...then invoke as
required.

getcwd

getcwd chmod
mkdir

getcwd chmod
mkdir

os

getcwd chmod
mkdir

getcwd chmod
mkdir

enum
getcwd chmod

mkdir

random

getcwd chmod
mkdir

json

getcwd chmod
mkdir

getcwd chmod
mkdir

datetime

getcwd chmod
mkdir

getcwd chmod
mkdir

timegetcwd chmod
mkdir

sys

getcwd chmod
mkdir

os

Functions are inside
modules inside the
standard library.

The function...

...is part of a
module...

...which comes as part of
the standard library.

A collection of related functions makes up a module, and there are lots of
modules in the standard library:

Don’t worry about what each of these modules does at this stage. We have a quick preview of some of them over the page, and will see more of the rest later in this book.

10   Chapter 1

digging deeper

Up Close with the Standard Library

The standard library is the jewel in Python’s crown, supplying reusable modules that help you with
everything from, for example, working with data, through manipulating ZIP archives, to sending emails,
to working with HTML. The standard library even includes a web server, as well as the popular SQLite
database technology. In this Up Close, we’ll present an overview of just a few of the most commonly used
modules in the standard library. To follow along, you can enter these examples as shown at your >>>
prompt (in IDLE). If you are currently looking at IDLE’s edit window, choose Run..."Python Shell from the
menu to access the >>> prompt.

Let’s start by learning a little about the system your interpreter is running on. Although Python prides
itself on being cross-platform, in that code written on one platform can be executed (generally unaltered)
on another, there are times when it’s important to know that you are running on, say, Mac OS X. The sys
module exists to help you learn more about your interpreter’s system. Here’s how to determine the identity
of your underlying operating system, by first importing the sys module, then accessing the platform
attribute:

>>> import sys
>>> sys.platform
'darwin'

The sys module is a good example of a reusable module that primarily provides access to preset attributes
(such as platform). As another example, here’s how to determine which version of Python is running,
which we pass to the print function to display on screen:

>>> print(sys.version)
3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)]

The os module is a good example of a reusable module that primarily yields functionality, as well as
providing a system-independent way for your Python code to interact with the underlying operating system,
regardless of exactly which operating system that is.

For example, here’s how to work out the name of the folder your code is operating within using the
getcwd function. As with any module, you begin by importing the module before invoking the function:

>>> import os
>>> os.getcwd()
'/Users/HeadFirst/CodeExamples'

You can access your system’s environment variables, as a whole (using the environ attribute) or
individually (using the getenv function):

>>> os.environ
'environ({'XPC_FLAGS': '0x0', 'HOME': '/Users/HeadFirst', 'TMPDIR': '/var/
folders/18/t93gmhc546b7b2cngfhz10l00000gn/T/', ... 'PYTHONPATH': '/Applications/
Python 3.4/IDLE.app/Contents/Resources', ... 'SHELL': '/bin/bash', 'USER':
'HeadFirst'})'
>>> os.getenv('HOME')
'/Users/HeadFirst'

Import the module you need, then access the attribute of interest. It looks like we are running “darwin”, which is the Mac OS X kernel name.

There’s a lot of information about
the Python version we’re running,
including that it’s 3.4.3.

Import the module, then invoke the functionality you need.
The “environ” attribute
contains lots
of data.

You can access a specifically named attribute (from the data contained in “environ”) using “getenv”.

you are here 4   11

the basics

Up Close with the Standard Library, Continued

Working with dates (and times) comes up a lot, and the standard library provides the datetime module to
help when you’re working with this type of data. The date.today function provides today’s date:

>>> import datetime
>>> datetime.date.today()
datetime.date(2015, 5, 31)

That’s certainly a strange way to display today’s date, though, isn’t it? You can access the day, month, and
year values separately by appending an attribute access onto the call to date.today:

>>> datetime.date.today().day
31
>>> datetime.date.today().month
5
>>> datetime.date.today().year
2015

You can also invoke the date.isoformat function and pass in today’s date to display a much more user-
friendly version of today’s date, which is converted to a string by isoformat:

>>> datetime.date.isoformat(datetime.date.today())
'2015-05-31'

Today’s date

Today’s date as a string

The component parts of
today’s date

And then there’s time, which none of us seem to have enough of. Can the standard library tell us what time it
is? Yes. After importing the time module, call the strftime function and specify how you want the time
displayed. In this case, we are interested in the current time’s hour (%H) and minute (%M) values in 24-hour
format:

>>> import time
>>> time.strftime("%H:%M")
'23:55'

How about working out the day of the week, and whether or not it’s before noon? Using the %A %p
specification with strftime does just that:

>>> time.strftime("%A %p")
'Sunday PM'

As a final example of the type of reusable functionality the standard library provides, imagine you have some
HTML that you are worried might contain some potentially dangerous <script> tags. Rather than
parsing the HTML to detect and remove the tags, why not encode all those troublesome angle brackets
using the escape function from the html module? Or maybe you have some encoded HTML that you’d
like to return to its original form? The unescape function can do that. Here are examples of both:

>>> import html
>>> html.escape("This HTML fragment contains a <script>script</script> tag.")
'This HTML fragment contains a <script>script</script> tag.'
>>> html.unescape("I ♥ Python's <standard library>.")
"I ♥ Python's <standard library>."

Converting
to and
from HTML
encoded text

Good heavens! Is that the time?

We’ve now worked out that it’s five minutes to midnight
on Sunday evening...time for bed, perhaps?

12   Chapter 1

everything you need

Batteries Included

I guess this is what
people mean by the term

“Python comes with batteries
included,” right?

Yes. That’s what they mean.
As the standard library is so rich, the thinking is all
you need to be immediately productive with
the language is to have Python installed.

Unlike Christmas morning, when you open
your new toy only to discover that it doesn’t
come with batteries, Python doesn’t disappoint;
it comes with everything you need to get going.
And it’s not just the modules in the standard
library that this thinking applies to: don’t forget
the inclusion of IDLE, which provides a small,
yet usable, IDE right out of the box.

All you have to do is code.

Q: How am I supposed to work out what any particular
module from the standard library does?

A: .The Python documentation has all the answers on
the standard library. Here’s the kicking-off point: https://docs.
python.org/3/library/index.html.

Geek Bits

The standard library isn’t the only place you’ll
find excellent importable modules to use with
your code. The Python community also supports a
thriving collection of third-party modules, some of
which we’ll explore later in this book. If you want a
preview, check out the community-run repository:
http://pypi.python.org.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
http://pypi.python.org/

you are here 4   13

the basics

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

		 ...

Data Structures Come Built-in
As well as coming with a top-notch standard library, Python also has some
powerful built-in data structures. One of these is the list, which can be
thought of as a very powerful array. Like arrays in many other languages, lists
in Python are enclosed within square brackets ([]).

The next three lines of code in our program (shown below) assign a literal
list of odd numbers to a variable called odds. In this code, odds is a list of
integers, but lists in Python can contain any data of any type, and you can even
mix the types of data in a list (if that’s what you’re into). Note how the odds
list extends over three lines, despite being a single statement. This is OK, as
the interpreter won’t decide a single statement has come to an end until it
finds the closing bracket (]) that matches the opening one ([). Typically, the
end of the line marks the end of a statement in Python, but there
can be exceptions to this general rule, and multiline lists are just one of them
(we’ll meet the others later).

This is a new
variable, called
“odds”, which is
assigned a list of
odd numbers.

This is the list of odd numbers, enclosed in square brackets. This single statement extends over three lines, which is OK.

There are lots of things that can be done with lists, but we’re going to defer
any further discussion until a later chapter. All you need to know now is that
this list now exists, has been assigned to the odds variable (thanks to the use of
the assignment operator, =), and contains the numbers shown.

Python variables are dynamically assigned
Before getting to the next line of code, perhaps a few words are needed about
variables, especially if you are one of those programmers who might be used
to predeclaring variables with type information before using them (as is the
case in statically typed programming languages).

In Python, variables pop into existence the first time you use them, and their
type does not need to be predeclared. Python variables take their type
information from the type of the object they’re assigned. In our program, the
odds variable is assigned a list of numbers, so odds is a list in this case.

Let’s look at another variable assignment statement. As luck would have it,
this just so happens to also be the next line of code in our program.

Python comes with all
the usual operators,
including <, >, <=, >=,
==, !=, as well as the
= assignment operator.

Like arrays, lists
can hold data of
any type.

14   Chapter 1

assignment is everywhere

Invoking Methods Obtains Results
The third line of code in our program is another assignment statement.

Unlike the last one, this one doesn’t assign a data structure to a variable, but instead assigns
the result of a method call to another new variable, called right_this_minute. Take
another look at the third line of code:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Here’s another
variable being
created and
assigned a value.

This call generates
a value to assign to
the variable.

Invoking built-in module funct ionality
The third line of code invokes a method called today that comes with the datetime
submodule, which is itself part of the datetime module (we did say this naming strategy was
a little confusing). You can tell today is being invoked due to the standard postfix parentheses:
().

When today is invoked, it returns a “time object” (of type datetime.datetime), which
contains many pieces of information about the current time. These are the current time’s
attributes, which you can access via the customary dot-notation syntax. In this program,
we are interested in the minute attribute, which we can access by appending .minute to the
method invocation, as shown above. The resulting value is then assigned to the right_
this_minute variable. You can think of this line of code as saying: create an object that represents
today’s time, then extract the value of the minute attribute before assigning it to a variable. It is tempting to split
this single line of code into two lines to make it “easier to understand,” as follows:

time_now = datetime.today()

right_this_minute = time_now.minute

You’ll see
more of the
dot-notation
syntax later
in this book.

You can do this (if you like), but most Python programmers prefer not to create the temporary
variable (time_now in this example) unless it’s needed at some point later in the program.

First, determine the
current time.... ...then extract the

minute value.

you are here 4   15

the basics

Deciding When to Run Blocks of Code
At this stage we have a list of numbers called odds. We also have a minute value
called right_this_minute. In order to work out whether the current minute
value stored in right_this_minute is an odd number, we need some way of
determining if it is in the odds list. But how do we do this?

It turns out that Python makes this type of thing very straightforward. As well
as including all the usual comparison operators that you’d expect to find in any
programming language (such as >, <, >=, <=, and so on), Python comes with a few

“super” operators of its own, one of which is in.

The in operator checks if one thing is inside another. Take a look at the next line of
code in our program, which uses the in operator to check whether right_this_
minute is inside the odds list:

	 ...

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

	 ...

The in operator returns either True or False. As you’d expect, if the value in
right_this_minute is in odds, the if statement evaluates to True, and the
block of code associated with the if statement executes.

Blocks in Python are easy to spot, as they are always indented.

In our program there are two blocks, which each contain a single call to the print
function. This function can display messages on screen (and we’ll see lots of uses of it
throughout this book). When you enter this program code into the edit window, you
may have noticed that IDLE helps keep you straight by indenting automatically. This
is very useful, but do be sure to check that IDLE’s indentation is what you want:

This “if” statement
will evaluate to either
“True” or “False”.

The “in” operator
is powerful. It can
determine whether
one thing is inside
another.

	 ...

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Here is one
block of code.
Note: the code
is indented.

And here is another block of code.
Note: it’s indented, too.

Did you notice that there are no curly braces here?

The “print” function displays a message on standard output (i.e., your screen).

16   Chapter 1

no curly braces

What Happened to My Curly Braces?
If you are used to a programming language that uses curly braces ({ and })
to delimit blocks of code, encountering blocks in Python for the first time can
be disorienting, as Python doesn’t use curly braces for this purpose. Python
uses indentation to demarcate a block of code, which Python programmers
prefer to call suite as opposed to block (just to mix things up a little).

It’s not that curly braces don’t have a use in Python. They do, but—as we’ll
see in Chapter 3—curly braces have more to do with delimiting data than
they have to do with delimiting suites (i.e., blocks) of code.

Suites within any Python program are easy to spot, as they are always
indented. This helps your brain quickly identify suites when reading code.
The other visual clue for you to look out for is the colon character (:), which
is used to introduce a suite that’s associated with any of Python’s control
statements (such as if, else, for, and the like). You’ll see lots of examples
of this usage as you progress through this book.

A colon introduces an indented suite of code
The colon (:) is important, in that it introduces a new suite of code that must
be indented to the right. If you forget to indent your code after a colon, the
interpreter raises an error.

Not only does the if statement in our example have a colon, the else has
one, too. Here’s all the code again:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Colons introduce
indented suites.

Instead of referring
to a code “block,”
Python programmers
use the word “suite.”
Both names are used
in practice, but the
Python docs prefer
“suite.”

We’re nearly done. There’s just one final statement to discuss.

you are here 4   17

the basics

What “e lse” Can You Have with “if”?
We are nearly done with the code for our example program, in that there is
only one line of code left to discuss. It is not a very big line of code, but it’s
an important one: the else statement that identifies the block of code that
executes when the matching if statement returns a False value.

Take a closer look at the else part from our program code, which we need
to unindent to align with the if part of this statement:

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")
See the colon?

I guess if there’s an “else”,
there must also be an “else if”,
or does Python spell it “elseif”?

Neither. Python spells it elif.
If you have a number of conditions that you need to
check as part of an if statement, Python provides
elif as well as else. You can have as many elif
parts (each with its own suite) as needed.

Here’s a small example that assumes a variable
called today is previously assigned a string
representing whatever today is:

if today == 'Saturday':
 print('Party!!')
elif today == 'Sunday':
 print('Recover.')
else:
 print('Work, work, work.')

Three individual
suites: one for
the “if”, another
for the “elif”,
and the final
catch-all for
the “else”.

Did you spot
that the “else” is
unindented to align
with the “if”?

It is a very common
slip-up for Python
newbies to forget
the colon when
first writing code.

18   Chapter 1

indent like crazy

Suites Can Contain Embedded Suites
Any suite can contain any number of embedded suites, which also have to be
indented. When Python programmers talk about embedded suites, they tend
to talk about levels of indentation.

The initial level of indentation for any program is generally referred to as the
first or (as is so common when it comes to counting with many programming
languages) indentation level zero. Subsequent levels are referred to as the
second, third, fourth, and so on (or level one, level two, level three, and so on).

Here’s a variation on the today example code from the last page. Note how
an embedded if/else has been added to the if statement that executes
when today is set to 'Sunday'. We’re also assuming another variable called
condition exists and is set to a value that expresses how you’re currently
feeling. We’ve indicated where each of the suites is, as well as at which level of
indentation it appears:

if today == 'Saturday':
 print('Party!')
elif today == 'Sunday':
 if condition == 'Headache':
 print('Recover, then rest.')
 else:
 print('Rest.')
else:
 print('Work, work, work.')

This single line of code is a suite.

These single
lines of code
are both
suites.

This single line of code is
a suite.

These four
lines of code
are a suite

Indentation
level zero

Indentation
level twoIndentation

level one

It is important to note that code at the same level of indentation is only
related to other code at the same level of indentation if all the code appears
within the same suite. Otherwise, they are in separate suites, and it does
not matter that they share a level of indentation. The key point is that
indentation is used to demarcate suites of code in Python.

you are here 4   19

the basics

What We Already Know
With the final few lines of code discussed, let’s pause to review what
the odd.py program has told us about Python:

That’s a long list
for such a short program!
So...what’s the plan for the
rest of this chapter?

Let’s extend this program to do more.
It’s true that we needed more lines to describe what this short
program does than we actually needed to write the code. But
this is one of the great strengths of Python: you can get a lot
done with a few lines of code.

Review the list above once more, and then turn the page to
make a start on seeing what our program’s extensions will be.

�� Python comes with a built-in IDE called IDLE, which
lets you create, edit, and run your Python code—all
you need to do is type in your code, save it, and then
press F5.

�� IDLE interacts with the Python interpreter, which
automates the compile-link-run process for you. This
lets you concentrate on writing your code.

�� The interpreter runs your code (stored in a file) from
top to bottom, one line at a time. There is no notion of
a main() function/method in Python.

�� Python comes with a powerful standard library, which
provides access to lots of reusable modules (of which
datetime is just one example).

�� There is a collection of standard data structures
available to you when you're writing Python
programs. The list is one of them, and is very similar
in notion to an array.

�� The type of a variable does not need to be declared.
When you assign a value to a variable in Python, it
dynamically takes on the type of the data it refers to.

�� You make decisions with the if/elif/else
statement. The if, elif, and else keywords
precede blocks of code, which are known in the
Python world as “suites.”

�� It is easy to spot suites of code, as they are always
indented. Indentation is the only code grouping
mechanism provided by Python.

�� In addition to indentation, suites of code are also
preceded by a colon (:). This is a syntactical
requirement of the language.

20   Chapter 1

now what?

Extending Our Program to Do More
Let’s extend our program in order to learn a bit more Python.

At the moment, the program runs once, then terminates. Imagine that we
want this program to execute more than once; let’s say five times. Specifically,
let’s execute the “minute checking code” and the if/else statement five
times, pausing for a random number of seconds between each message
display (just to keep things interesting). When the program terminates, five
messages should be on screen, as opposed to one.

Here’s the code again, with the code we want to run multiple times circled:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Let’s tweak
the program to
run this code a
number of times.

What we need to do:

Loop over the encircled code.
A loop lets us iterate over any suite, and Python provides a number of ways to do just that. In this
case (and without getting into why), we’ll use Python’s for loop to iterate.

1

Pause execution.
Python’s standard time module provides a function called sleep that can pause execution for an
indicated number of seconds.

2

Generate a random number.
Happily, another Python module, random, provides a function called randint that we can use
to generate a random number. Let’s use randint to generate a number between 1 and 60, then
use that number to pause the execution of our program on each iteration.

3

We now know what we want to do. But is there a
preferred way of going about making these changes?

you are here 4   21

the basics

What’s the Best Approach to Solv ing
This Problem?

You know what you need to do: put
your head down, read the docs, and
work out the Python code you need
to solve this problem. When you’ve
done this, you’re ready to change
your program as needed...

That approach works, but I’m more
of an experimenter myself. I like to
try out small snippets of code before
I commit to making changes to my
working program. I’m happy to read
the docs, but like to experiment too...

Both approaches work with Python
You can follow both of these approaches when working with Python, but most
Python programmers favor experimentation when trying to work out what
code they need for a particular situation.

Don’t get us wrong: we are not suggesting that Bob’s approach is wrong and
Laura’s is right. It’s just that Python programmers have both options available
to them, and the Python Shell (which we met briefly at the start of this
chapter) makes experimentation a natural choice for Python programmers.

Let’s determine the code we need in order to extend our program, by
experimenting at the >>> prompt.

Bob Laura

Experimenting at
the >>> prompt
helps you work out
the code you need.

22   Chapter 1

shell experiments

Returning to the Python Shell
Here’s how the Python Shell looked the last time we interacted with it (yours might
look a little different, as your messages may have appeared in an alternate order):

The Python Shell (or just “shell” for short) has displayed our program’s messages, but
it can do so much more than this. The >>> prompt allows you to enter any Python
code statement and have it execute immediately. If the statement produces output, the
shell displays it. If the statement results in a value, the shell displays the calculated
value. If, however, you create a new variable and assign it a value, you need to enter
the variable’s name at the >>> prompt to see what value it contains.

Check out the example interactions, shown below. It is even better if you follow along
and try out these examples at your shell. Just be sure to press the Enter key to terminate
each program statement, which also tells the shell to execute it now:

The shell displays a message on screen as a result of this code statement executing (don’t forget to press Enter).
If you perform a calculation, the shell displays the
resulting value (after you press Enter).

Assigning a value to a variable does not display the
variable’s value. You have to specifically ask the
shell to do so.

you are here 4   23

the basics

Experiment ing at the Shell
Now that you know you can type a single Python statement into the >>> prompt
and have it execute immediately, you can start to work out the code you need to
extend your program.

Here’s what you need your new code to do:

Loop a specified number of times. We’ve already decided to use
Python’s for loop here.

Pause the program for a specified number of seconds. The sleep
function from the standard library’s time module can do this.

Generate a random number between two provided values. The
randint function from the random module will do the trick.

Rather than continuing to show you complete IDLE screenshots, we’re only
going to show you the >>> prompt and any displayed output. Specifically, from
this point onward, you’ll see something like the following instead of the earlier
screenshots:

>>> print('Hello Mum!')
Hello Mum!

The shell prompt

The single code statement, which you need to type in (followed by a press of the Enter key)

The output resulting from executing
the single code statement, which is
shown in blue in your shell

Over the next few pages, we’re going to experiment to figure out how to add
the three features listed above. We’ll play with code at the >>> prompt until we
determine exactly the statements we need to add to our program. Leave the odd.
py code as is for now, then make sure the shell window is active by selecting it.
The cursor should be blinking away to the right of the >>> , waiting for you to
type some code.

Flip the page when you’re ready. Let the experiments begin.

24   Chapter 1

repeat yourself

Iterat ing Over a Sequence of Objects
We said earlier that we were going to employ Python’s for loop here. The
for loop is perfect for controlling looping when you know ahead of time how
many iterations you need. (When you don’t know, we recommend the while
loop, but we’ll save discussing the details of this alternate looping construct
until we actually need it). At this stage, all we need is for, so let’s see it in
action at the >>> prompt.

We present three typical uses of for. Let’s see which one best fits our needs.

Use “for” when
looping a known
number of times.

Usage example 1. This for loop, below, takes a list of numbers and
iterates once for each number in the list, displaying the current number on
screen. As it does so, the for loop assigns each number in turn to a loop
iteration variable, which is given the name i in this code.

As this code is more than a single line, the shell indents automatically for you
when you press Enter after the colon. To signal to the shell that you are done
entering code, press Enter twice at the end of the loop’s suite:

>>> for i in [1, 2, 3]:
		 print(i)

1
2
3

As this is a suite, you need to press the Enter key TWICE after typing in this code in order to terminate the statement and see it execute.
Note the indentation and colon. Like if statements, the code associated with a
for statement needs to be indented.

Usage example 2. This for loop, below, iterates over a string, with
each character in the string being processed during each iteration. This
works because a string in Python is a sequence. A sequence is an ordered
collection of objects (and we’ll see lots of examples of sequences in this book),
and every sequence in Python can be iterated over by the interpreter.

Nowhere did you have to tell the for loop how big the string is. Python is smart
enough to work out when the string ends, and arranges to terminate (i.e., end)
the for loop on your behalf when it exhausts all the objects in the sequence.

>>> for ch in "Hi!":
		 print(ch)

H
i
!

Python is smart enough to work out that this
string should be iterated over one-character
at a time (and that’s why we used “ch” as
the loop variable name here).

We used “i” as the loop iteration variable in
this example, but we could’ve called it just
about anything. Having said that, “i”, “j”,
and “k” are incredibly popular among most
programmers in this situation.

A sequence is an
ordered collection
of objects.

you are here 4   25

the basics

Iterat ing a Specif ic Number of Times
In addition to using for to iterate over a sequence, you can be more exact
and specify a number of iterations, thanks to the built-in function called
range.

Let’s look at another usage example that showcases using range.

Usage example 3. In its most basic form, range accepts a single integer
argument that dictates how many times the for loop runs (we’ll see other
uses of range later in this book). In this loop, we use range to generate a
list of numbers that are assigned one at a time to the num variable:

The for loop didn’t use the num loop iteration variable anywhere in the
loop’s suite. This did not raise an error, which is OK, as it is up to you (the
programmer) to decide whether or not num needs to be processed further in
the suite. In this case, doing nothing with num is fine.

>>> for num in range(5):
		 print('Head First Rocks!')

Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!

We asked for a range of five numbers, so we iterated five times, which results in five messages. Remember: press Enter twice to run code that has a suite.

It looks like our “for”
loop experiments are about
to pay off. Are we done with
the first task?

Indeed we are. Task #1 is complete.
The three usage examples show that Python’s for loop is
what we need to use here, so let’s take the technique shown
in Usage example 3 and use it to iterate a specified number
of times using a for loop.

26   Chapter 1

make that change

Applying the Outcome of Task #1 to Our Code
Here’s how our code looked in IDLE’s edit window before we worked on Task #1:

You now know that you can use a for loop to repeat the five lines of code at the
bottom of this program five times. The five lines will need to be indented under the
for loop, as they are going to form the loop’s suite. Specifically, each line of code
needs to be indented once. However, don’t be tempted to perform this action on each
individual line. Instead, let IDLE indent the entire suite for you in one go.

Begin by using your mouse to select the lines of code you want to indent:

This is the
code we
want to
repeat.

Use your mouse
to select the
lines of code
you want to
indent.

you are here 4   27

the basics

Indent Suites with Format...Indent Region
With the five lines of code selected, choose Indent Region from the Format menu in
IDLE’s edit window. The entire suite moves to the right by one indentation level:

The Indent Region
option from the
Format menu
indents all of the
selected lines of
code in one go.

Note that IDLE also has a Dedent Region menu option, which unindents suites, and
that both the Indent and Dedent menu commands have keyboard shortcuts, which differ
slightly based on the operating system you are running. Take the time to learn the
keyboard shortcuts that your system uses now (as you’ll use them all the time). With the
suite indented, it’s time to add the for loop:

Add the
“for”
loop line.

The “for”
loop’s suite
is properly
indented.

28   Chapter 1

feeling sleepy?

Arranging to Pause Execut ion
Let’s remind ourselves of what we need this code to do:

Loop a specified number of times.

Pause the program for a specified number of seconds.

Generate a random number between two provided values.

We’re now ready to return to the shell and try out some more code to help
with the second task: pause the program for a specified number of seconds.

However, before we do that, recall the opening line of our program, which
imported a specifically named function from a specifically named module:

>>> import time
>>>

This tells the shell to
import the “time” module.

from datetime import datetime

When the import statement is used as it is with the time module above,
you get access to the facilities provided by the module without anything
expressly named being imported into your program’s code. To access a
function provided by a module imported in this way, use the dot-notation
syntax to name it, as shown here:

>>> time.sleep(5)
>>>

This usage of “import” brings in the named function to your program. You can then invoke it without using the dot-notation syntax.

Name the module
first (before
the period). Specify the function you want

to invoke (after the period).Note that when you invoke sleep in this way, the shell pauses for five
seconds before the >>> prompt reappears. Go ahead, and try it now.

This is one way to import a function into your program. Another equally
common technique is to import a module without being specific about the
function you want to use. Let’s use this second technique here, as it will
appear in many Python programs you’ll come across.

As mentioned earlier in this chapter, the sleep function can pause execution
for a specified number of seconds, and is provided by the standard library’s
time module. Let’s import the module first, without mentioning sleep just
yet:

This is the number of seconds to sleep for.

you are here 4   29

the basics

Importat ion Confusion

Hang on a second...Python supports two
importation mechanisms? Doesn’t that get
kind of confusing?

That’s a great question.
Just to be clear, there aren’t two importation mechanisms in
Python, as there is only one import statement. However, the
import statement can be used in two ways.

The first, which we initially saw in our example program,
imports a named function into our program’s namespace,
which then allows us to invoke the function as necessary without
having to link the function back to the imported module. (The
notion of a namespace is important in Python, as it defines the
context within which your code runs. That said, we’re going to
wait until a later chapter to explore namespaces in detail).

In our example program, we use the first importation technique,
then invoke the datetime function as datetime(), not as
datetime.datetime().

The second way to use import is to just import the module, as
we did when experimenting with the time module. When we
import this way, we have to use the dot-notation syntax to access
the module’s functionality, as we did with time.sleep().

Q: Is there a correct way to use import?

A: It can often come down to personal preference, as some programmers like to be very specific, while others don’t. However, there is a
situation that occurs when two modules (we’ll call them A and B) have a function of the same name, which we’ll call F. If you put from A
import F and from B import F in your code, how is Python to know which F to invoke when you call F()? The only way you
can be sure is to use the nonspecific import statement (that is, put import A and import B in your code), then invoke the specific
F you want using either A.F() or B.F() as needed. Doing so negates any confusion.

30   Chapter 1

every now and again

Generat ing Random Integers with Python
Although it is tempting to add import time to the top of our program, then
call time.sleep(5) in the for loop’s suite, we aren’t going to do this right
now. We aren’t done with our experimentations. Pausing for five seconds isn’t
enough; we need to be able to pause for a random amount of time. With that in
mind, let’s remind ourselves of what we’ve done, and what remains:

Loop a specified number of times.

Pause the program for a specified number of seconds.

Generate a random number between two provided values.

Once we have this last task completed, we can get back to confidently changing
our program to incorporate all that we’ve learned from our experimentations.
But we’re not there yet—let’s look at the last task, which is to generate a random
number.

As with sleeping, the standard library can help here, as it includes a module called
random. With just this piece of information to guide us, let’s experiment at the
shell:

>>> import random
>>>

Now what? We could look at the Python docs or consult a Python reference
book...but that involves taking our attention away from the shell, even though it
might only take a few moments. As it happens, the shell provides some additional
functions that can help here. These functions aren’t meant to be used within
your program code; they are designed for use at the >>> prompt. The first is
called dir, and it displays all the attributes associated with anything in Python,
including modules:

>>> dir(random)
['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF',
'Random', ... 'randint', 'random', 'randrange',
'sample', 'seed', 'setstate', 'shuffle', 'triangular',
'uniform', 'vonmisesvariate', 'weibullvariate']

This is an abridged list. What you’ll see on your screen is much longer.

This list has a lot in it. Of interest is the randint() function. To learn more
about randint, let’s ask the shell for some help.

Buried in the middle of this long list is the name of the function we need.

Use “dir” to
query an
object.

you are here 4   31

the basics

Asking the Interpreter for Help
Once you know the name of something, you can ask the shell for help. When
you do, the shell displays the section from the Python docs related to the name
you’re interested in.

Let’s see this mechanism in action at the >>> prompt by asking for help with
the randint function from the random module:

>>> help(random.randint)
Help on method randint in module random:

randint(a, b) method of random.Random instance
 Return random integer in range [a, b], including
 both end points.

Ask for help at
the >>> prompt...

...and see the associated
documentation right in the shell.

A quick read of the displayed docs for the randint function confirms what
we need to know: if we provide two integers to randint, we get back a
random integer from the resulting inclusive range.

A few final experiments at the >>> prompt show the randint function in
action:

>>> random.randint(1,60)
27
>>> random.randint(1,60)
34
>>> random.randint(1,60)
46

If you’re following along, what you’ll see on your screen will vary, as the integers returned by “randint” are generated randomly.

Because you imported the “random” module using “import random”, you
need to remember to prefix the call to “randint” with the module name

and a dot. So it’s “random.randint()” and not “randint()”.

With this, you are now in a position to place a satisfying check mark against
the last of our tasks, as you now know enough to generate a random number
between two provided values:

Generate a random number between two provided values.

It’s time to return to our program and make our changes.

Geek Bits

You can recall the last
command(s) typed into
the IDLE >>> prompt
by typing Alt-P when
using Linux or Windows.
On Mac OS X, use Ctrl-P.
Think of the “P” as
meaning “previous.”

Use “help”
to read the
Python docs.

32   Chapter 1

what we now know

Reviewing Our Experiments
Before you forge ahead and change your program, let’s quickly review the
outcome of our shell experiments.

We started by writing a for loop, which iterated five times:

>>> for num in range(5):
		 print('Head First Rocks!')

Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!

We asked for a range of five numbers, so we iterated five times, which results in five messages.

Then we used the sleep function from the time module to pause execution
of our code for a specified number of seconds:

>>> import time
>>> time.sleep(5)

The shell imports the “time” module, letting us
invoke the “sleep” function.

And then we experimented with the randint function (from the random
module) to generate a random integer from a provided range:

>>> import random
>>> random.randint(1,60)
12
>>> random.randint(1,60)
42
>>> random.randint(1,60)
17

Note: different integers are generated once more, as “randint” returns a different random integer each time it’s invoked.

We can now put all of this together and change our program.

Let’s remind ourselves of what we decided to do earlier in this chapter: have
our program iterate, executing the “minute checking code” and the if/
else statement five times, and pausing for a random number of seconds
between each iteration. This should result in five messages appearing on
screen before the program terminates.

you are here 4   33

the basics

Code Experiments Magnets
Based on the specification at the bottom of the last page, as well as
the results of our experimentations, we went ahead and did some
of the required work for you. But, as we were arranging our code
magnets on the fridge (don’t ask) someone slammed the door, and
now some of our code’s all over the floor.

Your job is to put everything back together, so that we can run the
new version of our program and confirm that it’s working as required.

random.randint(1, 60)

import random
import time

for i in range(5):

wait_time

time.sleep

Decide which code
magnet goes in each
of the dashed-line
locations.

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 right_this_minute = datetime.today().minute

 if right_this_minute in odds:

 print("This minute seems a little odd.")

 else:

 print("Not an odd minute.")

 wait_time =

 ()

Where do
all these
go?

34   Chapter 1

rearranged code

Code Experiments Magnets Solution
Based on the specification from earlier, as well as the results of our
experimentations, we went ahead and did some of the required work
for you. But, as we were arranging our code magnets on the fridge
(don’t ask) someone slammed the door, and now some of our code’s all
over the floor.

Your job was to put everything back together, so that we could run the
new version of our program and confirm that it’s working as required.

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 right_this_minute = datetime.today().minute

 if right_this_minute in odds:

 print("This minute seems a little odd.")

 else:

 print("Not an odd minute.")

 wait_time =

 ()

import time

import random

for i in range(5):

random.randint(1, 60)

wait_timetime.sleep

You don’t have to
put your imports
at the top of your
code, but it is a
well-established
convention among
Python programmers
to do so.

All of this code
is indented
under the “for”
statement, as it
is all part of the “for” statement’s suite. Remember: Python does not use curly braces to delimit suites; it

uses indentation
instead.

The “for”
loop iterates
EXACTLY
five times.

The “randint” function
provides a random
integer that is assigned
to a new variable called
“wait_time”, which...

...is then used in the call to “sleep” to pause the program’s execution for a random number of seconds.

you are here 4   35

the basics

Test Drive
Let’s try running our upgraded program in IDLE to see what happens. Change your version
of odd.py as needed, then save a copy of your new program as odd2.py. When you’re
ready, press F5 to execute your code.

When you press F5 to
run this code...

...you should see output similar to this. Just remember that your output will differ, as the random numbers your program generates most likely won’t match ours.

Don’t worry if you see a different list of messages
than those shown here. You should see five messages,
as that’s how many times the loop code runs.

36   Chapter 1

update our list

Updat ing What We Already Know
With odd2.py working, let’s pause once more to review the new
things we’ve learned about Python from these last 15 pages:

Q: Do I have to remember all this stuff?

A: No, and don’t freak out if your brain is resisting the insertion of everything seen so far. This is only the first chapter, and we’ve designed it
to be a quick introduction to the world of Python programming. If you’re getting the gist of what’s going on with this code, then you’re doing fine.

�� When trying to determine the code that they
need to solve a particular problem, Python
programmers often favor experimenting with code
snippets at the shell.

�� If you’re looking at the >>> prompt, you’re at the
Python Shell. Go ahead: type in a single Python
statement and see what happens when it runs.

�� The shell takes your line of code and sends it to
the interpreter, which then executes it. Any results
are returned to the shell and are then displayed
on screen.

�� The for loop can be used to iterate a fixed
number of times. If you know ahead of time how
many times you need to loop, use for.

�� When you don’t know ahead of time how often
you’re going to iterate, use Python’s while loop
(which we have yet to see, but—don’t worry—we
will see it in action later).

�� The for loop can iterate over any sequence
(like a list or a string), as well as execute a fixed
number of times (thanks to the range function).

�� If you need to pause the execution of your
program for a specified number of seconds, use
the sleep function provided by the standard
library’s time module.

�� You can import a specific function from a module.
For example, from time import sleep
imports the sleep function, letting you invoke it
without qualification.

�� If you simply import a module—for example,
import time—you then need to qualify the
usage of any of the module’s functions with the
module name, like so: time.sleep().

�� The random module has a very useful function
called randint that generates a random
integer within a specified range.

�� The shell provides two interactive functions that
work at the >>> prompt. The dir function lists
an object’s attributes, whereas help provides
access to the Python docs.

you are here 4   37

the basics

Phew! That’s another
big list...

It is, but we are on a roll here.
It’s true we’ve only touched on a small amount
of the Python language so far. But what we’ve
looked at has been very useful.

What we’ve seen so far helps to demonstrate
one of Python’s big selling points: a few lines of
code do a lot. Another of the language’s claims
to fame is this: Python code is easy to read.

In an attempt to prove just how easy, we
present on the next page a completely different
program that you already know enough about
Python to understand.

Who’s in the mood for a nice, cold beer?

A Few Lines of Code Do a Lot

38   Chapter 1

serious about beer

Coding a Serious Business Applicat ion
With a tip of the hat to Head First Java, let’s take a look at the Python version of
that classic’s first serious application: the beer song.

Shown below is a screenshot of the Python version of the beer song code. Other
than a slight variation on the usage of the range function (which we’ll discuss in
a bit), most of this code should make sense. The IDLE edit window contains the
code, while the tail end of the program’s output appears in a shell window:

Dealing with all that beer...
With the code shown above typed
into an IDLE edit window and saved,
pressing F5 produces a lot of output in
the shell. We’ve only shown a little bit
of the resulting output in the window
on the right, as the beer song starts
with 99 bottles of beer on the wall and
counts down until there’s no more beer.
In fact, the only real twist in this code
is how it handles this “counting down,”
so let’s take a look at how that works
before looking at the program’s code in
detail.

Running this code produces this output in the shell.

you are here 4   39

the basics

Python Code Is Easy to Read

That code really is easy
to read. But what’s the
catch?

There isn’t one!
When most programmers new to Python
first encounter code like that of the beer
song, they assume that something’s got to
give somewhere else.

There has to be a catch, doesn’t there?

No, there doesn’t. It’s not by accident that
Python code is easy to read: the language
was designed with that specific goal in mind.
Guido van Rossum, the language’s creator,
wanted to create a powerful programming
tool that produced code that was easy to
maintain, which meant code created in
Python has to be easy to read, too.

40   Chapter 1

losing your mind?

Is Indentat ion Dri v ing You Crazy?

Hang on a second. All this
indentation is driving me crazy.
Surely that’s the catch?

Indentation takes time to get used to.
Don’t worry. Everyone coming to Python from a “curly-
braced language” struggles with indentation at first. But it
does get better. After a day or two of working with Python,
you’ll hardly notice you’re indenting your suites.

One problem that some programmers do have with
indentation occurs when they mix tabs with spaces. Due to
the way the interpreter counts whitespace, this can lead
to problems, in that the code “looks fine” but refuses to run.
This is frustrating when you're starting out with Python.

Our advice: don’t mix tabs with spaces in your Python code.

In fact, we’d go even further and advise you to configure
your editor to replace a tap of the Tab key with four spaces
(and while you’re at it, automatically remove any trailing
whitespace, too). This is the well-established convention
among many Python programmers, and you should
follow it, too. We’ll have more to say about dealing with
indentation at the end of this chapter.

Gett ing back to the beer song code
If you take a look at the invocation of range in the beer song, you’ll notice
that it takes three arguments as opposed to just one (as in our first example
program).

Take a closer look, and without looking at the explanation on the next page,
see if you can work out what’s going on with this call to range:

This is new: the call to “range” takes three arguments, not one.

you are here 4   41

the basics

Asking the Interpreter for Help on a
Funct ion
Recall that you can use the shell to ask for help with anything to do with
Python, so let’s ask for some help with the range function.

When you do this in IDLE, the resulting documentation is more than a
screen’s worth and it quickly scrolls off the screen. All you need to do is scroll
back in the window to where you asked the shell for help (as that’s where the
interesting stuff about range is):

>>> help(range)
Help on class range in module builtins:

class range(object)
 | range(stop) -> range object
 | range(start, stop[, step]) -> range object
 |
 | Return a sequence of numbers from start to stop by step.
		 ...

This looks like it will give us
what we need here.

The “range” function can be invoked in one of two ways.

Start ing , stopping , and stepping
As range is not the only place you’ll come across start, stop, and step,
let’s take a moment to describe what each of these means, before looking at
some representative examples (on the next page):

The START value lets you control from WHERE the range begins.
So far, we’ve used the single-argument version of range, which—from the documentation—
expects a value for stop to be provided. When no other value is provided, range defaults to
using 0 as the start value, but you can set it to a value of your choosing. When you do, you
must provide a value for stop. In this way, range becomes a multi-argument invocation.

1

The STOP value lets you control WHEN the range ends.
We’ve already seen this in use when we invoked range(5) in our code. Note that the range
that’s generated never contains the stop value, so it’s a case of up-to-but-not-including stop.

2

The STEP value lets you control HOW the range is generated.
When specifying start and stop values, you can also (optionally) specify a value for step. By
default, the step value is 1, and this tells range to generate each value with a stride of 1; that
is, 0, 1, 2, 3, 4, and so on. You can set step to any value to adjust the stride taken. You can
also set step to a negative value to adjust the direction of the generated range.

3

42   Chapter 1

home on the range

Experiment ing with Ranges
Now that you know a little bit about start, stop, and step, let’s experiment at
the shell to learn how we can use the range function to produce many different
ranges of integers.

To help see what’s going on, we use another function, list, to transform
range’s output into a human-readable list that we can see on screen:

This is how we used “range” in our first program.

Feeding the output from “range” to “list” produces a list.

We can adjust the START and STOP values for “range”.

It is also possible to adjust the STEP value.

Things get really interesting when you adjust the
range’s direction by negating the STEP value.

After all of our experimentations, we arrive at a range invocation (shown last,
above) that produces a list of values from 99 down to 1, which is exactly what
the beer song’s for loop does:

The call to “range” takes three
arguments: start, stop, and step.

>>> range(5)
range(0, 5)

>>> list(range(5))
[0, 1, 2, 3, 4]

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]

>>> list(range(10, 0, -2))
[10, 8, 6, 4, 2]

>>> list(range(10, 0, 2))
[]

>>> list(range(99, 0, -1))
[99, 98, 97, 96, 95, 94, 93, 92, ... 5, 4, 3, 2, 1]

Python won’t stop you from being silly. If your START
value is bigger than your STOP value, and STEP is positive,

you get back nothing (in this case, an empty list).

you are here 4   43

the basics

Here again is the beer code, which has been spread out over the
entire page so that you can concentrate on each line of code
that makes up this “serious business application.”

Grab your pencil and, in the spaces provided, write in what you
thought each line of code does. Be sure to attempt this yourself
before looking at what we came up with on the next page. We’ve
got you started by doing the first line of code for you.

word = "bottles"

for beer_num in range(99, 0, -1):

 print(beer_num, word, "of beer on the wall.")

 print(beer_num, word, "of beer.")

 print("Take one down.")

 print("Pass it around.")

 if beer_num == 1:

 print("No more bottles of beer on the wall.")

 else:

 new_num = beer_num - 1

 if new_num == 1:

 word = "bottle"

 print(new_num, word, "of beer on the wall.")

 print()

Assign the value “bottles” (a string) to a
new variable called “word”.

44   Chapter 1

beer explained

word = "bottles"

for beer_num in range(99, 0, -1):

 print(beer_num, word, "of beer on the wall.")

 print(beer_num, word, "of beer.")

 print("Take one down.")

 print("Pass it around.")

 if beer_num == 1:

 print("No more bottles of beer on the wall.")

 else:

 new_num = beer_num - 1

 if new_num == 1:

 word = "bottle"

 print(new_num, word, "of beer on the wall.")

 print()

Assign the value “bottles” (a string) to a
new variable called “word”.
Loop a specified number of times, from
99 down to (but not including) zero. Use
“beer_num” as the loop iteration variable.
The four calls to the print function
display the current iteration’s song
lyrics, “99 bottles of beer on the wall. 99
bottles of beer. Take one down. Pass it
around.”, and so on with each iteration.
Check to see if we are on the last
passed-around beer...
And if we are, end the song lyrics.
Otherwise...
Remember the number of the next beer in
another variable called “new_num”.
If we’re about to drink our last beer...
Change the value of the “word” variable
so the last lines of the lyric make sense.
Complete this iteration’s song lyrics.
At the end of this iteration, print a
blank line. When all the iterations are
complete, terminate the program.

Here again is the beer code, which has been spread out over the
entire page so that you can concentrate on each line of code
that makes up this “serious business application.”

You were to grab your pencil and then, in the spaces provided,
write in what you thought each line of code does. We did the first
line of code for you to get you started.

How did you get on? Are your explanations similar to ours?

you are here 4   45

the basics

Don’t Forget to Try the Beer Song Code
If you haven’t done so already, type the beer song code into IDLE, save it as beersong.py,
and then press F5 to take it for a spin. Do not move on to the next chapter until you have a working beer
song.

Wrapping up what you already know
Here are some new things you learned as a result of working through (and
running) the beer song code:

With all the beer gone, what’s next?
That’s it for Chapter 1. In the next chapter, you are going to learn a bit more
about how Python handles data. We only just touched on lists in this chapter,
and it’s time to dive in a little deeper.

Q: I keep getting errors when I try to run my beer
song code. But my code looks fine to me, so I’m a little
frustrated. Any suggestions?

A: The first thing to check is that you have your
indentation right. If you do, then check to see if you have
mixed tabs with spaces in your code. Remember: the code
will look fine (to you), but the interpreter refuses to run it. If
you suspect this, a quick fix is to bring your code into an
IDLE edit window, then choose Edit..."Select All from the
menu system, before choosing Format..."Untabify Region.
If you’ve mixed tabs with spaces, this will convert all your
tabs to spaces in one go (and fix any indentation issues).

You can then save your code and press F5 to try running it
again. If it still refuses to run, check that your code is exactly
the same as we presented in this chapter. Be very careful
of any spelling mistakes you may have made with your
variable names.

Q: The Python interpreter won’t warn me if I misspell
new_num as nwe_num?

A: No, it won’t. As long as a variable is assigned a value,
Python assumes you know what you’re doing, and continues
to execute your code. It is something to watch for, though,
so be vigilant.

�� Indentation takes a little time to get used to. Every
programmer new to Python complains about
indentation at some point, but don’t worry: soon
you’ll not even notice you’re doing it.

�� If there’s one thing that you should never, ever
do, it’s mix tabs with spaces when indenting
your Python code. Save yourself some future
heartache, and don’t do this.

�� The range function can take more than one
argument when invoked. These arguments let you
control the start and stop values of the generated
range, as well as the step value.

�� The range function’s step value can also be
specified with a negative value, which changes the
direction of the generated range.

46   Chapter 1

the code

Chapter 1’s Code

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:
 print("This minute seems a little odd.")
else:
 print("Not an odd minute.")

from datetime import datetime

import random
import time

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

for i in range(5):
 right_this_minute = datetime.today().minute
 if right_this_minute in odds:
 print("This minute seems a little odd.")
 else:
 print("Not an odd minute.")
 wait_time = random.randint(1, 60)
 time.sleep(wait_time)

word = "bottles"
for beer_num in range(99, 0, -1):
 print(beer_num, word, "of beer on the wall.")
 print(beer_num, word, "of beer.")
 print("Take one down.")
 print("Pass it around.")
 if beer_num == 1:
 print("No more bottles of beer on the wall.")
 else:
 new_num = beer_num - 1
 if new_num == 1:
 word = "bottle"
 print(new_num, word, "of beer on the wall.")
 print()

We started with the “odd.py”
program, then...

... extended the code to
create “odd2.py”, which ran
the “minute checking code”
five times (thanks to the use
of Python’s “for” loop).

We concluded this chapter with the Python version of the Head First classic “beer song.” And, yes, we know: it’s hard not to work on this code without singing along... §

this is a new chapter   47

list data2

Working with Ordered Data

All programs process data, and Python programs are no exception.�
In fact, take a look around: data is everywhere. A lot of, if not most, programming is all about

data: acquiring data, processing data, understanding data. To work with data effectively, you need

somewhere to put your data when processing it. Python shines in this regard, thanks (in no small

part) to its inclusion of a handful of widely applicable data structures: lists, dictionaries, tuples, and

sets. In this chapter, we’ll preview all four, before spending the majority of this chapter digging deeper

into lists (and we’ll deep-dive into the other three in the next chapter). We’re covering these data

structures early, as most of what you’ll likely do with Python will revolve around working with data.

This data would be
sooooo much easier to
work with...if only I’d
arranged it as a list.

48   Chapter 2

variable basics

Numbers, Strings...and Objects
Working with a single data value in Python works just like you’d expect it to.
Assign a value to a variable, and you’re all set. With help from the shell, let’s
look at some examples to recall what we learned in the last chapter.

Numbers
Let’s assume that this example has already imported the random module.
We then call the random.randint function to generate a random number
between 1 and 60, which is then assigned to the wait_time variable. As
the generated number is an integer, that’s what type wait_time is in this
instance:

>>> wait_time = random.randint(1, 60)
>>> wait_time
26

>>> word = "bottles"
>>> word
'bottles'

Note how you didn’t have to tell the interpreter that wait_time is going to
contain an integer. We assigned an integer to the variable, and the interpreter
took care of the details (note: not all programming languages work this way).

Strings
If you assign a string to a variable, the same thing happens: the interpreter
takes care of the details. Again, we do not need to declare ahead of time that
the word variable in this example is going to contain a string:

This ability to dynamically assign a value to a variable is central to Python’s
notion of variables and type. In fact, things are more general than this in that
you can assign anything to a variable in Python.

Objects
In Python everything is an object. The means that numbers, strings, functions,
modules—everything—is an object. A direct consequence of this is that all
objects can be assigned to variables. This has some interesting ramifications,
which we’ll start learning about on the next page.

Everything is an
object in Python,
and any object
can be assigned
to a variable.

A variable
takes on the
type of the
value assigned.

you are here 4   49

data

“Everything Is an Object”
Any object can be dynamically assigned to any variable in Python. Which begs the
question: what’s an object in Python? The answer: everything is an object.

All data values in Python are objects, even though—on the face of things—“Don’t
panic!” is a string and 42 is a number. To Python programmers, “Don’t panic!” is a
string object and 42 is a number object. Like in other programming languages, objects can
have state (attributes or values) and behavior (methods).

All this talk of “objects” can
mean only one thing: Python is object-
oriented, right?

Sort of.
You can certainly program Python in an object-oriented way
using classes, objects, instances, and so on (more on all of this later
in this book), but you don’t have to. Recall the programs from the
last chapter...none of them needed classes. Those programs just
contained code, and they worked fine.

Unlike some other programming languages (most notably, Java),
you do not need to start with a class when first creating code in
Python: you just write the code you need.

Now, having said all that (and just to keep you on your toes),
everything in Python behaves as if it is an object derived from some
class. In this way, you can think of Python as being more object-
based as opposed to purely object-oriented, which means that
object-oriented programming is optional in Python.

But...what does all this actually mean?
As everything is an object in Python, any “thing” can be assigned to any variable, and
variables can be assigned anything (regardless of what the thing is: a number, a string, a
function, a widget...any object). Tuck this away in the back of your brain for now; we’ll
return to this theme many times throughout this book.

There’s really not a lot more to storing single data values in variables. Let’s now take a
look at Python’s built-in support for storing a collection of values.

50   Chapter 2

data structures 101

Meet the Four Built-in Data Structures
Python comes with four built-in data structures that you can use to hold any
collection of objects, and they are list, tuple, dictionary, and set.

Note that by “built-in” we mean that lists, tuples, dictionaries, and sets are always
available to your code and they do not need to be imported prior to use: each of these
data structures is part of the language.

Over the next few pages, we present an overview of all four of these built-in data
structures. You may be tempted to skip over this overview, but please don’t.

If you think you have a pretty good idea what a list is, think again. Python’s list
is more similar to what you might think of as an array, as opposed to a linked-list,
which is what often comes to mind when programmers hear the word “list.” (If
you’re lucky enough not to know what a linked-list is, sit back and be thankful).

Python’s list is the first of two ordered-collection data structures:

A list is like
an array—
the objects
it stores
are ordered
sequentially
in slots.

List: an ordered mutable collection of objects
A list in Python is very similar to the notion of an array in other
programming languages, in that you can think of a list as being an indexed
collection of related objects, with each slot in the list numbered from zero
upward.

Unlike arrays in a lot of other programming languages, though, lists are
dynamic in Python, in that they can grow (and shrink) on demand. There
is no need to predeclare the size of a list prior to using it to store any objects.

Lists are also heterogeneous, in that you do not need to predeclare the type
of the object you’re storing—you can mix’n’match objects of different types
in the one list if you like.

Lists are mutable, in that you can change a list at any time by adding,
removing, or changing objects.

1

Lists can
dynamically shrink
and grow to any
size.

Objects are stored in individual slots in the list.

As with arrays, slots are numbered from zero upward...these are “index values.”
object

object

object

object

object

List

0

1

2

3

4

you are here 4   51

data

A tuple
is an
immutable
list.

Tuple: an ordered immutable collection of objects
A tuple is an immutable list. This means that once you assign objects to a tuple,
the tuple cannot be changed under any circumstance.

It is often useful to think of a tuple as a constant list.

Most new Python programmers scratch their head in bemusement when they
first encounter tuples, as it can be hard to work out their purpose. After all,
what use is a list that cannot change? It turns out that there are plenty of use
cases where you’ll want to ensure that your objects can’t be changed by your (or
anyone else’s) code. We’ll return to tuples in the next chapter (as well as later in
this book) when we talk about them in a bit more detail, as well as use them.

2

Ordered Collect ions Are Mutable/Immutable
Python’s list is an example of a mutable data structure, in that it can change (or
mutate) at runtime. You can grow and shrink a list by adding and removing objects as
needed. It’s also possible to change any object stored in any slot. We’ll have lots more
to say about lists in a few pages’ time as the remainder of this chapter is devoted to
providing a comprehensive introduction to using lists.

When an ordered list-like collection is immutable (that is, it cannot change), it’s
called a tuple:

Tuples are like lists,
except once created
they CANNOT
change. Tuples are
constant lists.

Tuples use index
values, too (just
like lists).

object

object

object

Tuple

0

1

2

Lists and tuples are great when you want to present data in an ordered way (such as a
list of destinations on a travel itinerary, where the order of destinations is important).
But sometimes the order in which you present the data isn’t important. For instance,
you might want to store some user’s details (such as their id and password), but you
may not care in what order they’re stored (just that they are). With data like this, an
alternative to Python’s list/tuple is needed.

52   Chapter 2

data structures 201

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Dictionaries associate keys
with values, and (like lists) can
dynamically shrink and grow to
any size.

Keys
Values

A dictionary
stores key/
value pairs.

Dictionary: an unordered set of key/value pairs
Depending on your programming background, you may already know what a
dictionary is, but you may know it by another name, such as associative array,
map, symbol table, or hash.

Like those other data structures in those other languages, Python’s dictionary
allows you to store a collection of key/value pairs. Each unique key has a value
associated with it in the dictionary, and dictionaries can have any number of
pairs. The values associated with a key can be any object (of any type).

Dictionaries are unordered and mutable. It can be useful to think of Python’s
dictionary as a two-columned, multirow data structure. Like lists, dictionaries
can grow (and shrink) on demand.

3

An Unordered Data Structure: Dict ionary
If keeping your data in a specific order isn’t important to you, but structure
is, Python comes with a choice of two unordered data structures: dictionary
and set. Let’s look at each in turn, starting with Python’s dictionary.

Something to watch out for when using a dictionary is that you cannot rely
upon the internal ordering used by the interpreter. Specifically, the order
in which you add key/value pairs to a dictionary is not maintained by the
interpreter, and has no meaning (to Python). This can stump programmers
when they first encounter it, so we’re making you aware of it now so that
when we meet it again—and in detail—in the next chapter, you’ll get less of a
shock. Rest assured: it is possible to display your dictionary data in a specific
order if need be, and we’ll show you how to do that in the next chapter, too.

you are here 4   53

data

A Data Structure That Avoids Duplicates: Set
The final built-in data structure is the set, which is great to have at hand when you want
to remove duplicates quickly from any other collection. And don’t worry if the mention
of sets has you recalling high school math class and breaking out in a cold sweat.
Python’s implementation of sets can be used in lots of places.

object b
object f

object a object e

object d

object c

Set

Think of a set
as a collection of
unordered unique
items—no duplicates
allowed.

The 80/20 data structure rule of thumb
The four built-in data structures are useful, but they don’t cover every possible data
need. However, they do cover a lot of them. It’s the usual story with technologies
designed to be generally useful: about 80% of what you need to do is covered, while
the other, highly specific, 20% requires you to do more work. Later in this book, you’ll
learn how to extend Python to support any bespoke data requirements you may
have. However, for now, in the remainder of this chapter and the next, we’re going to
concentrate on the 80% of your data needs.

The rest of this chapter is dedicated to exploring how to work with the first of our four
built-in data structures: the list. We’ll get to know the remaining three data structures,
dictionary, set, and tuple, in the next chapter.

A set does not
allow duplicate
objects.

Set: an unordered set of unique objects
In Python, a set is a handy data structure for remembering a collection of
related objects while ensuring none of the objects are duplicated.

The fact that sets let you perform unions, intersections, and differences is an
added bonus (especially if you are a math type who loves set theory).

Sets, like lists and dictionaries, can grow (and shrink) as needed. Like dictionaries,
sets are unordered, so you cannot make assumptions about the order of the
objects in your set. As with tuples and dictionaries, you’ll get to see sets in action
in the next chapter.

4

54   Chapter 2

lists are everywhere

object

object

object

object

object

List

0

1

2

3

4

A List Is an Ordered Collect ion of Objects
When you have a bunch of related objects and you need to put them somewhere
in your code, think list. For instance, imagine you have a month’s worth of daily
temperature readings; storing these readings in a list makes perfect sense.

Whereas arrays tend to be homogeneous affairs in other programming languages,
in that you can have an array of integers, or an array of strings, or an array of
temperature readings, Python’s list is less restrictive. You can have a list of objects,
and each object can be of a differing type. In addition to being heterogeneous,
lists are dynamic: they can grow and shrink as needed.

Before learning how to work with lists, let’s spend some time learning how to spot
lists in Python code.

How to spot a list in code
Lists are always enclosed in square brackets, and the objects contained within
the list are always separated by a comma.

Recall the odds list from the last chapter, which contained the odd numbers from
0 through 60, as follows:

		 ...

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

		 ...

The list starts with an
opening square bracket.

The list ends with a closing square bracket.The data values (a.k.a. “the
objects”) are separated from one
another by a comma.

A list of the
odd numbers.

When a list is created where the objects are assigned to a new list directly in
your code (as shown above), Python programmers refer to this as a literal
list, in that the list is created and populated in one go.

The other way to create and populate a list is to “grow” the list in code,
appending objects to the list as the code executes. We’ll see an example of
this method later in this chapter.

Let’s look at some literal list examples.

Lists can be
created literally
or “grown” in code.

you are here 4   55

data

object

object

object

object

object

List

0

1

2

3

4

Creat ing Lists Literally
Our first example creates an empty list by assigning [] to a variable called prices:

prices = []

Here’s a list of temperatures in degrees Fahrenheit, which is a list of floats:

temps = [32.0, 212.0, 0.0, 81.6, 100.0, 45.3]

words = ['hello', 'world']

How about a list of the most famous words in computer programming? Here they are:

car_details = ['Toyota', 'RAV4', 2.2, 60807]

Here’s a list of car details. Note how it is OK to store data of mixed types in a list.
Recall that a list is “a collection of related objects.” The two strings, one float, and one
integer in this example are all Python objects, so they can be stored in a list if needed:

everything = [prices, temps, words, car_details]

Our two final examples of literal lists exploit the fact that—as in the last example—
everything is an object in Python. Like strings, floats, and integers, lists are objects, too.
Here’s an example of a list of list objects:

odds_and_ends = [[1, 2, 3], ['a', 'b', 'c'],

			 ['One', 'Two', 'Three']]

And here’s an example of a literal list of literal lists:

Lists inside
of a list

Don’t worry if
these last two
examples are
freaking you
out. We won’t
be working with
anything as complex
as this until a later
chapter.

The variable name is on the left of the
assignment operator...

...and the “literal list” is on the right. In this case, the list is empty.

Objects (in this case, some floats) are
separated by commas and surrounded by square brackets—it’s a list.

A list of
string objects

A list of
objects
of
differing
type

56   Chapter 2

lists at work

A list of the
five vowels

>>> vowels = ['a', 'e', 'i', 'o', 'u']

>>> for letter in word:
		 if letter in vowels:
			 print(letter)

i
i
a

Here’s a word
to check.

Take each letter in the word...

...and if it is in the “vowels” list...

...display the letter on screen.

The output from this code confirms the identity of the vowels in the word “Milliways”.

With vowels defined, we now need a word to check, so let’s create a
variable called word and set it to "Milliways":

Working with lists
We’ll use the shell to first define a list called vowels, then check to see if
each letter in a word is in the vowels list. Let’s define a list of vowels:

Let’s use this code as the basis for our working with lists.

object

object

object

object

object

List

0

1

2

3

4

Putt ing Lists to Work
The literal lists on the last page demonstrate how quickly lists can be created
and populated in code. Type in the data, and you’re off and running.

In a page or two, we’ll cover the mechanism that allows you to grow (or
shrink) a list while your program executes. After all, there are many situations
where you don’t know ahead of time what data you need to store, nor how
many objects you’re going to need. In this case, your code has to grow (or

“generate”) the list as needed. You’ll learn how to do that in a few pages’ time.

For now, imagine you have a requirement to determine whether a given
word contains any of the vowels (that is, the letters a, e, i, o, or u). Can we use
Python’s list to help code up a solution to this problem? Let’s see whether we
can come up with a solution by experimenting at the shell.

>>> word = "Milliways"

Is one object inside another? Check with “in”
If you remember the programs from Chapter 1, you will recall that we
used Python’s in operator to check for membership when we needed to ask
whether one object was inside another. We can take advantage of in again
here:

Geek Bits

We’re only using the letters
aeiou as vowels, even though
the letter y is considered to be
both a vowel and a consonant.

you are here 4   57

data

Use Your Editor When Working on More
Than a Few Lines of Code
In order to learn a bit more about how lists work, let’s take this code and
extend it to display each found vowel only once. At the moment, the code
displays each vowel more than once on output if the word being searched
contains more than one instance of the vowel.

First, let’s copy and paste the code you’ve just typed from the shell into a new
IDLE edit window (select File..."New File... from IDLE’s menu). We’re going
to be making a series of changes to this code, so moving it into the editor
makes perfect sense. As a general rule, when the code we’re experimenting
with at the >>> prompt starts to run to more than a few lines, we find it more
convenient to use the editor. Save your five lines of code as vowels.py.

When copying code from the shell into the editor, be careful not to include
the >>> prompt in the copy, as your code won’t run if you do (the interpreter
will throw a syntax error when it encounters >>>).

When you’ve copied your code and saved your file, your IDLE edit window
should look like this:

Your list example code
saved as “vowels.py” inside
an IDLE edit window.

Don’t forget: press F5 to run your program
With the code in the edit window, press F5 and then watch as IDLE jumps to
a restarted shell window, then displays the program’s output:

object

object

object

object

object

List

0

1

2

3

4

As expected, this output matches what we produced at the bottom of the last page, so we’re good to go.

58   Chapter 2

one at a time

“Growing” a List at Runt ime
Our current program displays each found vowel on screen, including any
duplicates found. In order to list each unique vowel found (and avoid displaying
duplicates), we need to remember any unique vowels that we find, before
displaying them on screen. To do this, we need to use a second data structure.

We can’t use the existing vowels list because it exists to let us quickly determine
whether the letter we’re currently processing is a vowel. We need a second list that
starts out empty, as we’re going to populate it at runtime with any vowels we find.

As we did in the last chapter, let’s experiment at the shell before making any
changes to our program code. To create a new, empty list, decide on a new
variable name, then assign an empty list to it. Let’s call our second list found.
Here we assign an empty list ([]) to found, then use Python’s built-in function
len to check how many objects are in a collection:

object

object

object

object

object

List

0

1

2

3

4

>>> found = []
>>> len(found)
0

Lists come with a collection of built-in methods that you can use to manipulate
the list’s objects. To invoke a method use the dot-notation syntax: postfix the list’s
name with a dot and the method invocation. We’ll meet more methods later in
this chapter. For now, let’s use the append method to add an object to the end of
the empty list we just created:

>>> found.append('e')
>>> found.append('i')
>>> found.append('o')
>>> len(found)
4
>>> found
['a', 'e', 'i' 'o']

Repeated calls to the append method add more objects onto the end of the list:

>>> found.append('a')
>>> len(found)
1
>>> found
['a']

An empty list...

...which the interpreter (thanks
to “len”) confirms has no objects.

Add to an existing list at runtime
using the “append” method.

The length of the list has now increased.

Asking the shell to display the contents of the list
confirms the object is now part of the list.

More runtime
additions

Once again, we use the shell to confirm all is in order.

The “len” built-
in function
reports on the
size of an object.

Let’s now look at what’s involved in checking whether a list contains an object.

Lists come with a
bunch of built-in
methods.

you are here 4   59

data

	 ...
if right_this_minute in odds:
 print("This minute seems a little odd.")
	 ...

The “in” operator
checks for
membership.

Would it not be better to
use a set here? Isn’t a set a
better choice when you're
trying to avoid duplicates?

Good catch. A set might be better here.

But, we’re going to hold off on using a set until the next
chapter. We’ll return to this example when we do. For now,
concentrate on learning how a list can be generated at
runtime with the append method.

Checking for Membership with “in”
We already know how to do this. Recall the “Milliways” example from a few
pages ago, as well as the odds.py code from the previous chapter, which
checked to see whether a calculated minute value was in the odds list:

Is the object “in” or “not in”?
As well as using the in operator to check whether an object is contained
within a collection, it is also possible to check whether an object does not exist
within a collection using the not in operator combination.

Using not in allows you to append to an existing list only when you know
that the object to be added isn’t already part of the list:

>>> if 'u' not in found:
		 found.append('u')

>>> found
['a', 'e', 'i' 'o', 'u']
>>>
>>> if 'u' not in found:
		 found.append('u')

>>> found
['a', 'e', 'i' 'o', 'u']

This first invocation of “append” works, as “u” does not currently exist within the “found” list (as you saw on the previous page, the list contained [‘a’, ‘e’, ‘i’, ‘o’]).

This next invocation of “append”
does not execute, as “u” already
exists in “found” so does not need
to be added again.

object

object

object

object

object

List

0

1

2

3

4

60   Chapter 2

unique vowels only

It’s Time to Update Our Code
Now that we know about not in and append, we can change our code with
some confidence. Here’s the original code from vowels.py again:

Save a copy of this code as vowels2.py so that we can make our changes to
this new version while leaving the original code intact.

We need to add in the creation of an empty found list. Then we need some extra
code to populate found at runtime. As we no longer display the found vowels as
we find them, another for loop is required to process the letters in found, and
this second for loop needs to execute after the first loop (note how the indentation
of both loops is aligned below). The new code you need is highlighted:

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
for letter in word:
 if letter in vowels:
 print(letter)

The original
“vowels.py”
code

This code displays
the vowels in “word”
as they are found.

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
found = []
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
for vowel in found:
 print(vowel)

This is
“vowels2.py”.

Start with
an empty list. Include the code that decides whether to update the list of found vowels.

When this first “for” loop terminates, this second one gets to run, and it displays the vowels found in “word”.
Let’s make a final tweak to this code to change the line that sets word to

“Milliways” to be more generic and more interactive.

Changing the line of code that reads:

	 word = "Milliways"
to:
	 word = input("Provide a word to search for vowels: ")

instructs the interpreter to prompt your user for a word to search for vowels. The
input function is another piece of built-in goodness provided by Python.

Do this!

Make the change as suggested
on the left, then save your
updated code as vowels3.py.

object

object

object

object

object

List

0

1

2

3

4

you are here 4   61

data

Test Drive
With the change at the bottom of the last page applied, and this latest version of your program
saved as vowels3.py, let’s take this program for a few spins within IDLE. Remember: to run your
program multiple times, you need to return to the IDLE edit window before pressing the F5 key.

Here’s our version
of “vowels3.py”
with the “input”
edit applied.

Our output confirms that this small program is working as expected, and it even does the right thing
when the word contains no vowels. How did you get on when you ran your program in IDLE?

And here are our
test runs...

62   Chapter 2

manipulating lists

Removing Objects from a List
Lists in Python are just like arrays in other languages, and then some.

The fact that lists can grow dynamically when more space is needed (thanks
to the append method) is a huge productivity boon. Like a lot of other
things in Python, the interpreter takes care of the details for you. If the list
needs more memory, the interpreter dynamically allocates as much memory
as needed. Likewise, when a list shrinks, the interpreter dynamically reclaims
memory no longer needed by the list.

Other methods exist to help you manipulate lists. Over the next four pages
we introduce four of the most useful methods: remove, pop, extend, and
insert:

object

object

object

object

object

List

0

1

2

3

4

remove: takes an object’s value as its sole argument
The remove method removes the first occurrence of a specified data value from a list. If
the data value is found in the list, the object that contains it is removed from the list (and
the list shrinks in size by one). If the data value is not in the list, the interpreter will raise an
error (more on this later):

1

This is *not* an index value, it’s the value to remove.

>>> nums = [1, 2, 3, 4]
>>> nums
[1, 2, 3, 4]

>>> nums.remove(3)
>>> nums
[1, 2, 4]

1 432
This is what the
“nums” list looks like
before the call
to the “remove”
method.

1 42
After the call
to “remove”, the
object with 3 as
its value is gone.

you are here 4   63

data

pop: takes an optional index value as its argument
The pop method removes and returns an object from an existing list based on the
object’s index value. If you invoke pop without specifying an index value, the last
object in the list is removed and returned. If you specify an index value, the object
in that location is removed and returned. If a list is empty or you invoke pop with
a nonexistent index value, the interpreter raises an error (more on this later).

Objects returned by pop can be assigned to a variable if you so wish, in which case
they are retained. However, if the popped object is not assigned to a variable, its
memory is reclaimed and the object disappears.

2

This is an index value. Zero corresponds to the first object in the list (the number 1).

>>> nums.pop()
4
>>> nums
[1, 2]

>>> nums.pop(0)
1

>>> nums
[2]

At this point, “nums”
has been reduced to
a single-item list.

Popping Objects Off a List
The remove method is great for when you know the value of the object you
want to remove. But often it is the case that you want to remove an object
from a specific index slot.

For this, Python provides the pop method:
object

object

object

object

object

List

0

1

2

3

4

1 42Before “pop” is called,
we have a list with
three objects.

1

4

2

1

2

The “pop” method returns the removed object, which is reclaimed.

After the
“pop”, the list
shrinks.

As before, “pop”
returns the removed
object. Once again,
the object is
reclaimed by the
interpreter.

The “nums” list has shrunk to a single-item list.

You didn’t tell “pop” which item to remove, so it operates on the last item in the list.

64   Chapter 2

growing your list

extend: takes a list of objects as its sole argument
The extend method takes a second list and adds each of its objects to an existing
list. This method is very useful for combining two lists into one:

3

Extending a List with Objects
You already know that append can be used to add a single object to an existing
list. Other methods can dynamically add data to a list, too:

object

object

object

object

object

List

0

1

2

3

4

Using an empty list here is valid, if a little silly (as you’re adding no items to the end of an existing list). If you’d instead called “append([])”, an empty list would be added to the end of the existing list, but—in this example—using “extend([])” does nothing.

>>> nums.extend([3, 4])
[2, 3, 4]

>>> nums.extend([])
[2, 3, 4]

2
This is what
the “nums” list
currently looks like:
it is a single-item
list.

2 43

We've extended this “nums”
list by taking each of the
objects in the provided list
and appending its objects.

2 43Because the empty list used to
extend the “nums” list contained
no objects, nothing changes.

Provide a list of objects to append to the existing list.

you are here 4   65

datalist data

insert: takes an index value and an object as its arguments
The insert method inserts an object into an existing list before a specified index
value. This lets you insert the object at the start of an existing list or anywhere
within the list. It is not possible to insert at the end of the list, as that’s what the
append method does:

4

Insert ing an Object into a List
The append and extend methods get a lot of use, but they are restricted to
adding objects onto the end (the righthand side) of an existing list. Sometimes,
you’ll want to add to the beginning (the lefthand side) of a list. When this is the
case, you’ll want to use the insert method.

object

object

object

object

object

List

0

1

2

3

4

>>> nums.insert(0, 1)
>>> nums
[1, 2, 3, 4]

The index of the object
to insert *before*

The value (aka “object”) to insert

After all that removing, popping, extending, and inserting, we’ve ended up with the
same list we started with a few pages ago: [1, 2, 3, 4].

Note how it’s also possible to use insert to add an object into any slot in an
existing list. In the example above, we decided to add an object (the number 1) to
the start of the list, but we could just as easily have used any slot number to insert
into the list. Let’s look at one final example, which—just for fun—adds a string into
the middle of the nums list, thanks to the use of the value 2 as the first argument
to insert:

Let’s now gain some experience using these list methods.

2 43Here’s how the “nums” list looked
after all that extending from the
previous page.

2 431

>>> nums.insert(2, "two-and-a-half")
>>> nums
[1, 2, 'two-and-a-half', 3, 4]

2 431 two-and-a-half

The first
argument to

“insert” indicates the index
value to insert
before.

And there it is—the final “nums” list, which has five objects: four numbers and one string.

Back to where we started

66   Chapter 2

just like arrays?

I’m a little confused. You keep telling me that
lists are “just like arrays in other programming
languages,” but you’ve yet to say anything about the
square bracket notation I use with arrays in my other
favorite programming language. What gives?

What About Using Square Brackets?

Don’t worry, we’re going to get to that in a bit.
The familiar square bracket notation that you know and love
from working with arrays in other programming languages
does indeed work with Python’s lists. However, before we get
around to discussing how, let’s have a bit of fun with some of
the list methods that you now know about.

Q: How do I find out more about these and any other list methods?

A: You ask for help. At the >>> prompt, type help(list) to access Python’s list documentation (which provides a few pages of
material) or type help(list.append) to request just the documentation for the append method. Replace append with any other
list method name to access that method’s documentation.

you are here 4   67

data

Time for a challenge.

Before you do anything else, take the seven lines of code shown below and
type them into a new IDLE edit window. Save the code as panic.py, and
execute it (by pressing F5).

Study the messages that appear on screen. Note how the first four lines of code
take a string (in phrase), and turn it into a list (in plist), before displaying
both phrase and plist on screen.

The other three lines of code take plist and transform it back into a string (in
new_phrase) before displaying plist and new_phrase on screen.

Your challenge is to transform the string "Don’t panic!" into the string
"on tap" using only the list methods shown thus far in this book. (There’s no

hidden meaning in the choice of these two strings: it’s merely a matter of the
letters in “on tap” appearing in "Don’t panic!"). At the moment, panic.
py displays "Don’t panic!" twice.

Hint: use a for loop when performing any operation multiple times.

phrase = "Don't panic!"

plist = list(phrase)

print(phrase)

print(plist)

new_phrase = ''.join(plist)

print(plist)

print(new_phrase)

We are starting
with a string.

We turn the
string into a list. We display the string

and the list on screen.

Add your list
manipulation code
here.

This line takes the
list and turns it
back into a string.

We display the
transformed list and
the new string on screen.

68   Chapter 2

on tap

It was time for a challenge.

Before you did anything else, you were to take the seven lines of code shown
on the previous page and type them into a new IDLE edit window, save the
code as panic.py, and execute it (by pressing F5).

Your challenge was to transform the string "Don’t panic!" into the
string "on tap" using only the list methods shown thus far in this book.
Before your changes, panic.py displayed “Don’t panic!” twice.

The new string (displaying “on tap”) is to be stored in the new_phrase
variable.

phrase = "Don't panic!"

plist = list(phrase)

print(phrase)

print(plist)

new_phrase = ''.join(plist)

print(plist)

print(new_phrase)

You were to add your list
manipulation code here.
This is what we came
up with—don’t worry if
yours is very different
from ours. There’s
more than one way to
perform the necessary
transformations using the
list methods.

for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove(“ ’ ”)
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))

This small loop pops the
last four objects from

“plist”. No more “nic!”.
Get rid of the
‘D’ at the start
of the list.

Find, then remove, the apostrophe from the list.

Swap the two objects at
the end of the list by
first popping each object
from the list, then using
the popped objects to
extend the list. This is a
line of code that you’ll
need to think about for a
little bit. Key point: the
pops occur *first* (in
the order shown), then
the extend happens.

This line of code pops the space from the list, then inserts it back into the list at index location 2. Just like the last line of code, the pop occurs *first*, before the insert happens. And, remember: spaces are characters, too.

As there’s a lot going on in this exercise solution, the next two
pages explain this code in detail.

you are here 4   69

data

What Happened to “plist”?
Let’s pause to consider what actually happened to plist as the code in
panic.py executed.

On the left of this page (and the next) is the code from panic.py, which,
like every other Python program, is executed from top to bottom. On the
right of this page is a visual representation of plist together with some
notes about what’s happening. Note how plist dynamically shrinks and
grows as the code executes:

The Code The State of plist

phrase = "Don't panic!"

plist = list(phrase)

print(phrase)
print(plist)

for i in range(4):
 plist.pop()

plist.pop(0)

plist.remove("'")

At this point in the code, plist does not yet exist. The
second line of code transforms the phrase string into a
new list, which is assigned to the plist variable:

Each time the for loop iterates, plist shrinks by one
object until the last four objects are gone:

The loop terminates, and plist has shrunk until eight
objects remain. It’s now time to get rid of some other
unwanted objects. Another call to pop removes the first
item on the list (which is at index number 0):

With the letter D popped off the front of the list, a call to
remove dispatches with the apostrophe:

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

D o n ' t p a n i c
10D o n ' t p a n i

9D o n ' t p a n
8D

0

o
1

n
2

 '
3

t
4 5

p
6

a
7

o
0

n
1

 '
2

t
3 4

p
5

a
6

o
0

n
1

t
2 3

p
4

a
5

object

object

object

object

object

List

0

1

2

3

4

These calls to “print” display the current state of the
variables (before we start
our manipulations).

70   Chapter 2

manipulating plist

What Happened to “plist”, Cont inued
We’ve been pausing for a moment to consider what actually happened to
plist as the code in panic.py executed.

Based on the execution of the code from the last page, we now have a six-
item list with the characters o, n, t, space, p, and a available to us. Let’s
keep executing our code:

The Code The State of plist

plist.extend([plist.pop(), plist.pop()])

plist.insert(2, plist.pop(3))

new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

This is what plist looks like as a result of the code on
the previous page executing:

The next line of code contains three method
invocations: two calls to pop and one to extend. The
calls to pop happen first (from left to right):

The call to extend takes the popped objects and adds
them to the end of plist. It can be useful to think of
extend as shorthand for multiple calls to the append
method:

All that’s left to do (to plist) is to swap the t character
at location 2 with the space character at index location 3.
The next line of code contains two method invocations.
The first uses pop to extract the space character:

Then the call to insert slots the space character into
the correct place (before index location 2):

o
0

n
1

t
2 3

p
4

a
5

o
0

n
1

t
2 3

p

a

o
0

n
1

t
2 3

a
4

p
5

o
0

n
1

t
2

a
3

p
4

o
0

n
1 2

t
3

a
4

p
5

object

object

object

object

object

List

0

1

2

3

4

Ta da!
These calls to “print” display the state of the variables
(after we’ve performed our
manipulations).

Turn “plist” back into a string.

you are here 4   71

data

Lists: What We Know
We’re 20 pages in, so let’s take a little break and review what we’ve
learned about lists so far:

That’s all fine by me,
but is there anything I
need to watch out for
when manipulating lists?

Yes. Care is always needed.
As working with and manipulating lists
in Python is often very convenient, care
needs to be taken to ensure the interpreter
is doing exactly what you want it to.

A case in point is copying one list to
another list. Are you copying the list, or
are you copying the objects in the list?
Depending on your answer and on what
you are trying to do, the interpreter will
behave differently. Flip the page to learn
what we mean by this.

�� Lists are great for storing a collection of
related objects. If you have a bunch of
similar things that you’d like to treat as
one, a list is a great place to put them.

�� Lists are similar to arrays in other
languages. However, unlike arrays in
other languages (which tend to be fixed
in size), Python’s lists can grow and
shrink dynamically as needed.

�� In code, a list of objects is enclosed in
square brackets, and the list objects are
separated from each other by a comma.

�� An empty list is represented like this: [].

�� The fastest way to check whether an
object is in a list is to use Python’s in
operator, which checks for membership.

�� Growing a list at runtime is possible
due to the inclusion of a handful of list
methods, which include append,
extend, and insert.

�� Shrinking a list at runtime is possible
due to the inclusion of the remove and
pop methods.

72   Chapter 2

be careful copying

What Looks Like a Copy, But Isn’t
When it comes to copying an existing list to another one, it’s tempting to use
the assignment operator:

>>> first = [1, 2, 3, 4, 5]
>>> first
[1, 2, 3, 4, 5]
>>> second = first
>>> second
[1, 2, 3, 4, 5]

Create a new list (and assign five number objects to it).
The “first” list’s five numbers

“Copy” the existing list to a
new one, called “second”.

The “second” list’s five numbers

So far, so good. That looks like it worked, as the five number objects from
first have been copied to second:

>>> second.append(6)
>>> second
[1, 2, 3, 4, 5, 6] This seems OK, but isn’t.

Or, have they? Let’s see what happens when we append a new number to
second, which seems like a reasonable thing to do, but leads to a problem:

2 431 5first second

Again, so far, so good—but there’s a bug here. Look what happens when we
ask the shell to display the contents of first—the new object is appended
to first too!

>>> first
[1, 2, 3, 4, 5, 6]

Whoops! The new
object is appended to

“first” too.

first second2 431 5 6

This is a problem, in that both first and second are pointing to the same
data. If you change one list, the other changes, too. This is not good.

you are here 4   73

data

To solve this problem, lists come with a copy method, which does the right
thing. Take a look at how copy works:

>>> third = second.copy()
>>> third
[1, 2, 3, 4, 5, 6]

Don’t use the
assignment
operator to copy a
list; use the “copy”
method instead.

list data

How to Copy a Data Structure
If using the assignment operator isn’t the way to copy one list to another,
what is? What’s happening is that a reference to the list is shared among
first and second.

first second2 431 5 6

>>> third.append(7)
>>> third
[1, 2, 3, 4, 5, 6, 7]
>>> second
[1, 2, 3, 4, 5, 6]

Much better. The existing list is unchanged.

The “third” list
has grown by
one object.

first second2 431 5 6

third 2 431 5 6

first second2 431 5 6

third 2 431 5 6 7

With third created (thanks to the copy method), let’s append an object to
it, then see what happens:

That’s more like it—the
new object is only added to the “third” list, not to the other two lists (“first” and “second”).

74   Chapter 2

give me brackets

Square Brackets Are Everywhere

I can’t believe how many square
brackets are on that last page...yet
I still haven’t seen how they can be
used to select and access data in my
Python list.

Python supports the square bracket
notation, and then some.
Everyone who has used square brackets with an
array in almost any other programming language
knows that they can access the first value in an array
called names using names[0]. The next value
is in names[1], the next in names[2], and so
on. Python works this way, too, when it comes to
accessing objects in any list.

However, Python extends the notation to improve
upon this standardized behavior by supporting
negative index values (-1, -2, -3, and so on) as
well as a notation to select a range of objects from
a list.

Lists: Updat ing What We Already Know
Before we dive into a description of how Python extends the square bracket
notation, let’s add to our list of bullet points:

�� Take care when copying one list to another. If you want to have another variable reference an existing list,
use the assignment operator (=). If you want to make a copy of the objects in an existing list and use them
to initialize a new list, be sure to use the copy method instead.

you are here 4   75

data

Lists Extend the Square Bracket Notat ion
All our talk of Python’s lists being like arrays in other programming languages wasn’t
just idle talk. Like other languages, Python starts counting from zero when it comes to
numbering index locations, and uses the well-known square bracket notation to
access objects in a list.

Unlike a lot of other programming languages, Python lets you access the list relative to
each end: positive index values count from left to right, whereas negative index values
count from right to left:

object

object

object

object

object

List

0

1

2

3

4

0

D
-12

1

o
-11

2

n
-10

3

'
-9

4

t
-8

5

-7

6

p
-6

7

a
-5

8

n
-4

9

i
-3

10

c
-2

11

!
-1

Let’s see some examples while working at the shell:

>>> saying = "Don't panic!"
>>> letters = list(saying)
>>> letters
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
>>> letters[0]
'D'
>>> letters[3]
"'"
>>> letters[6]
'p'
>>> letters[-1]
'!'
>>> letters[-3]
'i'
>>> letters[-6]
'p'

Create a list of letters.

Python’s lists understand
positive index values,
which start from 0...

...as well as negative index values, which start from -1.

Using positive index values counts from left to right...

...whereas negative index values
count right to left.

As lists grow and shrink while your Python code executes, being able to
index into the list using a negative index value is often useful. For instance,
using -1 as the index value is always guaranteed to return the last object
in the list no matter how big the list is, just as using 0 always returns the first
object.

Python’s extensions to the square bracket notation don’t stop with support
for negative index values. Lists understand start, stop, and step, too.

>>> first = letters[0]
>>> last = letters[-1]
>>> first
'D'
>>> last
'!'

It’s easy to get at
the first and last
objects in any list.

76   Chapter 2

start stop step

Lists Understand Start, Stop, and Step
We first met start, stop, and step in the previous chapter when discussing the three-
argument version of the range function:

The call
to “range”
takes three
arguments,
one each for
start, stop,
and step.

Recall what start, stop, and step mean when it comes to specifying ranges (and let’s
relate them to lists):

The START value lets you control WHERE the range begins.
When used with lists, the start value indicates the starting index value.

The STOP value lets you control WHEN the range ends.
When used with lists, the stop value indicates the index value to stop at, but not include.

The STEP value lets you control HOW the range is generated.
When used with lists, the step value refers to the stride to take.

You can put start, stop, and step inside square brackets
When used with lists, start, stop, and step are specified within the square brackets and
are separated from one another by the colon (:) character:

			 letters[start:stop:step]	

It might seem somewhat counterintuitive, but all three values are optional when used
together:

	 When start is missing, it has a default value of 0.

	 When stop is missing, it takes on the maximum value allowable for the list.

	 When step is missing, it has a default value of 1.

object

object

object

object

object

List

0

1

2

3

4

The square
bracket
notation is
extended to
work with
start, stop,
and step.

you are here 4   77

data

>>> letters
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']

>>> letters[0:10:3]
['D', "'", 'p', 'i']

>>> letters[3:]
["'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']

>>> letters[:10]
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i']

>>> letters[::2]
['D', 'n', 't', 'p', 'n', 'c']

All the letters

Every third letter up to (but not including) index location 10

All letters up to (but
not including) index
location 10

Skip the first three letters, then give me everything else.

Every second letter

object

object

object

object

object

List

0

1

2

3

4

List Slices in Act ion
Given the existing list letters from a few pages back, you can specify
values for start, stop, and step in any number of ways.

Let’s look at some examples:

Using the start, stop, step slice notation with lists is very powerful (not to
mention handy), and you are advised to take some time to understand how
these examples work. Be sure to follow along at your >>> prompt, and feel
free to experiment with this notation, too.

Q: I notice that some of the characters on this page are surrounded by single quotes and others by double quotes. Is there some
sort of standard I should follow?

A: No, there’s no standard, as Python lets you use either single or double quotes around strings of any length, including strings that contain
only a single character (like the ones shown on this page; technically, they are single-character strings, not letters). Most Python programmers
use single quotes to delimit their strings (but that’s a preference, not a rule). If a string contains a single quote, double quotes can be used to
avoid the requirement to escape characters with a backslash (\), as most programmers find it’s easier to read "'" than '\''. You’ll see
more examples of both quotes being used on the next two pages.

78   Chapter 2

start stop list

object

object

object

object

object

List

0

1

2

3

4

>>> book = "The Hitchhiker's Guide to the Galaxy"
>>> booklist = list(book)
>>> booklist
['T', 'h', 'e', ' ', 'H', 'i', 't', 'c', 'h', 'h', 'i', 'k',
'e', 'r', "'", 's', ' ', 'G', 'u', 'i', 'd', 'e', ' ', 't',
'o', ' ', 't', 'h', 'e', ' ', 'G', 'a', 'l', 'a', 'x', 'y']

Start ing and Stopping with Lists
Follow along with the examples on this page (and the next) at your >>> prompt and
make sure you get the same output as we do.

We start by turning a string into a list of letters:

Turn a
string
into a
list, then
display
the list.

The newly created list (called booklist above) is then used to select a range of
letters from within the list:

>>> booklist[0:3]
['T', 'h', 'e']

>>> ''.join(booklist[0:3])
'The'

>>> ''.join(booklist[-6:])
'Galaxy'

Select the first three objects (letters) from the list.

Turn the selected range into a string (which
you learned how to do near the end of the
“panic.py” code). The second example selects
the last six objects from the list.

Note that the original string contained a
single quote character. Python is smart
enough to spot this, and surrounds the
single quote character with double quotes.

Be sure to take time to study this page (and the next) until you’re confident you
understand how each example works, and be sure to try out each example within
IDLE.

With the last example above, note how the interpreter is happy to use any of the
default values for start, stop, and step.

you are here 4   79

data

>>> backwards = booklist[::-1]
>>> ''.join(backwards)
"yxalaG eht ot ediuG s'rekihhctiH ehT"

>>> every_other = booklist[::2]
>>> ''.join(every_other)
"TeHthie' ud oteGlx"

Looks like gobbledegook,
doesn’t it? But it is actually the original string reversed.

And this looks like gibberish! But “every_other” is a list made

up from every second object (letter) starting from the first

and going to the last. Note: “start” and “stop” are defaulted.

Two final examples confirm that it is possible to start and stop anywhere within the list
and select objects. When you do this, the returned data is referred to as a slice. Think
of a slice as a fragment of an existing list.

Both of these examples select the letters from booklist that spell the word
'Hitchhiker'. The first selection is joined to show the word 'Hitchhiker',
whereas the second displays 'Hitchhiker' in reverse:

>>> ''.join(booklist[4:14])
'Hitchhiker'

>>> ''.join(booklist[13:3:-1])
'rekihhctiH'

Slice out the
word “Hitchhiker”.

Slice out the word “Hitchhiker”, but
do it in reverse order (i.e., backward).

A “slice” is
a fragment
of a list.

object

object

object

object

object

List

0

1

2

3

4

Stepping with Lists
Here are two more examples, which show off the use of step with lists.

The first example selects all the letters, starting from the end of the list (that is, it is
selecting in reverse), whereas the second selects every other letter in the list. Note how
the step value controls this behavior:

Slices are everywhere
The slice notation doesn’t just work with lists. In fact, you’ll find that you can slice any
sequence in Python, accessing it with [start:stop:step].

80   Chapter 2

panic some more

Putt ing Slices to Work on Lists
Python’s slice notation is a useful extension to the square bracket notation,
and it is used in many places throughout the language. You’ll see lots of uses
of slices as you continue to work your way through this book.

For now, let’s see Python’s square bracket notation (including the use of slices)
in action. We are going to take the panic.py program from earlier and
refactor it to use the square bracket notation and slices to achieve what was
previously accomplished with list methods.

Before doing the actual work, here’s a quick reminder of what panic.py
does.

Convert ing “Don’t panic!” to “on tap”
This code transforms one string into another by manipulating an existing list
using the list methods. Starting with the string "Don’t panic!", this code
produced "on tap" after the manipulations:

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)
for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))
new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

Display the initial
state of the string
and list.

Display the
resulting state of
the string and list.

Use a collection of list methods
to transform and manipulate
the list of objects.

object

object

object

object

object

List

0

1

2

3

4

Here’s the output produced by this program when it runs within IDLE:

The string “Don’t panic!” is transformed into “on tap” thanks to the list methods.

This is
“panic.py”.

you are here 4   81

data

For this exercise, replace the highlighted code above with new code that takes
advantage of Python’s square bracket notation. Note that you can still use list
methods where it makes sense. As before, you’re trying to transform "Don’t
panic!" into "on tap". Add your code in the space provided and call your
new program panic2.py:

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

print(plist)
print(new_phrase)

object

object

object

object

object

List

0

1

2

3

4

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)
for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))
new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

Putt ing Slices to Work on Lists, Cont inued
It’s time for the actual work. Here’s the panic.py code again, with the code
you need to change highlighted:

These are the lines
of code you need
to change.

82   Chapter 2

don’t panic again

For this exercise, you were to replace the highlighted code on the previous page
with new code that takes advantage of Python’s square bracket notation. Note
that you can still use list methods where it makes sense. As before, you’re trying
to transform "Don’t panic!" into "on tap". You were to call your new
program panic2.py:

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

print(plist)
print(new_phrase)

new_phrase = ‘’.join(plist[1:3])
new_phrase = new_phrase + ‘’.join([plist[5], plist[4], plist[7], plist[6]])

We started by slicing out the word “on” from “plist”...

...then picked out each additional letter that
we needed: space, “t”, “a”, and “p”.

I wonder which of these
two programs—“panic.py”
or “panic2.py”—is better?

That’s a great question.
Some programmers will look at the code
in panic2.py and, when comparing it
to the code in panic.py, conclude that
two lines of code is always better than
seven, especially when the output from
both programs is the same. Which is a
fine measurement of “betterness,” but not
really useful in this case.

To see what we mean by this, let’s take
a look at the output produced by both
programs.

you are here 4   83

data

Test Drive
Use IDLE to open panic.py and panic2.py in separate edit windows. Select the panic.
py window first, then press F5. Next select the panic2.py window, then press F5. Compare the
results from both programs in your shell.

The output produced by running the “panic2.py” program

The output produced
by running the “panic.py”
program

Notice how different these outputs are.

“panic.py”

“panic2.py”

84   Chapter 2

which panic?

Which Is Bet ter? It Depends...
We executed both panic.py and panic2.py in IDLE to help us
determine which of these two programs is “better.”

Take a look at the second-to-last line of output from both programs:

Although both programs conclude by displaying the string "on tap"
(having first started with the string "Don’t panic!"), panic2.py does
not change plist in any way, whereas panic.py does.

It is worth pausing for a moment to consider this.

Recall our discussion from earlier in this chapter called “What happened to
‘plist’?”. That discussion detailed the steps that converted this list:

>>>
Don't panic!
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
['o', 'n', ' ', 't', 'a', 'p']
on tap
>>> ========================= RESTART =========================
>>>
Don't panic!
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
on tap
>>>

This is the
output
produced by “panic.py”...

...whereas this
output is produced
by “panic2.py”.

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

into this much shorter list:

o
0

n
1 2

t
3

a
4

p
5

The “panic.py”
program started
with this list...

...and turned it into
this one.

All those list manipulations using the pop, remove, extend, and insert
methods changed the list, which is fine, as that’s primarily what the list
methods are designed to do: change the list. But what about panic2.py?

you are here 4   85

data

object

object

object

object

object

List

0

1

2

3

4

List methods
change the state
of a list, whereas
using square
brackets and slices
(typically) does not.

So...which is bet ter?
Using list methods to manipulate and transform an existing list does just that:
it manipulates and transforms the list. The original state of the list is no longer
available to your program. Depending on what you’re doing, this may (or
may not) be an issue. Using Python’s square bracket notation generally does
not alter an existing list, unless you decide to assign a new value to an existing
index location. Using slices also results in no changes to the list: the original
data remains as it was.

Which of these two approaches you decide is “better” depends on what you
are trying to do (and it’s perfectly OK not to like either). There is always
more than one way to perform a computation, and Python lists are flexible
enough to support many ways of interacting with the data you store in them.

We are nearly done with our initial tour of lists. There’s just one more topic
to introduce you to at this stage: list iteration.

Slicing a List Is Nondestruct i ve
The list methods used by the panic.py program to convert one string into
another were destructive, in that the original state of the list was altered
by the code. Slicing a list is nondestructive, as extracting objects from an
existing list does not alter it; the original data remains intact.

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

The “panic2.py”
program started
with this list.

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

The “panic2.py”
program ended up with
this list (i.e. no change)

The slices used by panic2.py are shown here. Note that each extracts data
from the list, but does not change it. Here are the two lines of code that do all
the heavy lifting, together with a representation of the data each slice extracts:

plist[1:3] o n

plist[5] plist[4] t plist[7] a plist[6] p

new_phrase = ''.join(plist[1:3])
new_phrase = new_phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])

The code

The
nondestructive
slices

86   Chapter 2

for loves lists

Python’s “for” Loop Understands Lists
Python’s for loop knows all about lists and, when provided with any list, knows
where the start of the list is, how many objects the list contains, and where the
end of the list is. You never have to tell the for loop any of this, as it works it
out for itself.

An example helps to illustrate. Follow along by opening up a new edit window
in IDLE and typing in the code shown below. Save this new program as
marvin.py, then press F5 to take it for a spin:

object

object

object

object

object

List

0

1

2

3

4

Execute this
small program...

...to produce this output.

Understanding marvin.py’s code
The first two lines of marvin.py are familiar: assign a string to a variable (called
paranoid_android), then turn the string into a list of character objects
(assigned to a new variable called letters).

It’s the next statement—the for loop—that we want you to concentrate on.

On each iteration, the for loop arranges to take each object in the letters
list and assign them one at a time to another variable, called char. Within the
indented loop body char takes on the current value of the object being processed
by the for loop. Note that the for loop knows when to start iterating, when to
stop iterating, as well as how many objects are in the letters list. You don’t need
to worry about any of this: that’s the interpreter’s job.

Each character from the “letters” list is printed on its own line, preceded by a tab character (that’s what the \t does).

for char in letters:
	 print('\t', char)

This is the list to
iterate over.

On each iteration,
this variable
refers to the
current object.

This block of code
executes on each iteration.

you are here 4   87

data

Python’s “for” Loop Understands Slices
If you use the square bracket notation to select a slice from a list, the for loop “does
the right thing” and only iterates over the sliced objects. An update to our most recent
program shows this in action. Save a new version of marvin.py as marvin2.py,
then change the code to look like that shown below.

Of interest is our use of Python’s multiplication operator (*) , which is used to
control how many tab characters are printed before each object in the second and
third for loop. We use * here to “multiply” how many times we want tab to appear:

object

object

object

object

object

List

0

1

2

3

4

The first loop iterates
over a slice of the first
six objects in the list.

The second loop iterates over a slice of the last seven objects in the list. Note how “*2” inserts two tab characters before each printed object.
The third (and final) loop iterates
over a slice from within the list,
selecting the characters that spell
the word “Paranoid”. Note how
“*3” inserts three tab characters
before each printed object.

88   Chapter 2

for loop slices

object

object

object

object

object

List

0

1

2

3

4

Marvin’s Slices in Detail
Let’s take a look at each of the slices in the last program in detail, as this
technique appears a lot in Python programs. Below, each line of slice code
is presented once more, together with a graphical representation of what’s
going on.

Before looking at the three slices, note that the program begins by assigning a
string to a variable (called paranoid_android) and converting it to a list
(called letters):

paranoid_android = "Marvin, the Paranoid Android"
letters = list(paranoid_android)

letters

0
M

1
a

6
,

9
h

5
n

8
t

4
i

72
r

3
v

10
e

11 14
r

13
a

12
P

15
a

16
n

o
17

-11

i
18

-10

d
23
-5

n
22
-6

A
21
-7

d
19

-9
20
-8

i
26
-2

o
25
-3

r
24
-4

d
27
 -1

Recall that you can access any
slot in a list using a positive or
negative index value. We’re only
showing some of the negative
index values here.

We’ll look at each of the slices from the marvin2.py program and see what
they produce. When the interpreter sees the slice specification, it extracts the
sliced objects from letters and returns a copy of the objects to the for
loop. The original letters list is unaffected by these slices.

The first slice extracts from the start of the list and ends (but doesn’t include)
the object in slot 6:

for char in letters[:6]:
 print('\t', char)

letters[:6] M a nir v

The second slice extracts from the end of the letters list, starting at slot –7
and going to the end of letters:

for char in letters[-7:]:
 print('\t'*2, char)

for char in letters[12:20]:
 print('\t'*3, char)

letters[-7:] A n iod r d

And finally, the third slice extracts from the middle of the list, starting at slot
12 and including everything up to but not including slot 20:

letters[12:20] P a ior n da

you are here 4   89

data

Lists are used a lot, but...
They are not a data structure panacea. Lists can be used in lots
of places; if you have a collection of similar objects that you
need to store in a data structure, lists are the perfect choice.

However—and perhaps somewhat counterintuitively—if the
data you’re working with exhibits some structure, lists can be a
bad choice. We’ll start exploring this problem (and what you
can do about it) on the next page.

Q: Surely there’s a lot more to lists than this?

A: Yes, there is. Think of the material in this chapter as a quick
introduction to Python’s built-in data structures, together with what
they can do for you. We are by no means done with lists, and will be
returning to them throughout the remainder of this book.

Q: But what about sorting lists? Isn’t that important?

A: Yes, it is, but let’s not worry about stuff like that until we actually
need to. For now, if you have a good grasp of the basics, that’s all
you need at this stage. And don’t worry: we’ll get to sorting soon.

Lists: Updat ing What We Know
Now that you’ve seen how lists and for loops interact, let’s quickly review
what you’ve learned over the last few pages:

I can see myself putting lists to lots
of uses in my Python programs. But is there
anything lists aren’t good at?

�� Lists understand the square bracket notation,
which can be used to select individual objects
from any list.

�� Like a lot of other programming languages,
Python starts counting from zero, so the first
object in any list is at index location 0, the
second at 1, and so on.

�� Unlike a lot of other programming languages,
Python lets you index into a list from either end.
Using –1 selects the last item in the list, –2 the
second last, and so on.

�� Lists also provide slices (or fragments) of a list
by supporting the specification of start, stop,
and step as part of the square bracket notation.

90   Chapter 2

not a panacea

What’s Wrong with Lists?
When Python programmers find themselves in a situation where they need to
store a collection of similar objects, using a list is often the natural choice. After all,
we’ve used nothing but lists in this chapter so far.

Recall how lists are great at storing a collection of related letters, such as with the
vowels list:

vowels = ['a', 'e', 'i', 'o', 'u']

And if the data is a collection of numbers, lists are a great choice, too:

nums = [1, 2, 3, 4, 5]

In fact, lists are a great choice when you have a collection of related anythings.

But imagine you need to store data about a person, and the sample data you’ve
been given looks something like this:

Name: Ford Prefect

Gender: Male
Occupation: Researcher

Home Planet: Betelgeuse Seven

On the face of things, this data does indeed conform to a structure, in that there
are tags on the left and associated data values on the right. So, why not put this data
in a list? After all, this data is related to the person, right?

To see why we shouldn’t, let’s look at two ways to store this data using lists (starting
on the next page). We are going to be totally upfront here: both of our attempts
exhibit problems that make using lists less than ideal for data like this. But, as the
journey is often half the fun of getting there, we’re going to try lists anyway.

Our first attempt concentrates on the data values on the right of the napkin,
whereas our second attempt uses the tags on the left as well as the associated data
values. Have a think about how you’d handle this type of structured data using
lists, then flip to the next page to see how our two attempts fared.

Some data for you to play with

you are here 4   91

data

>>> person1 = ['Ford Prefect', 'Male',
'Researcher', 'Betelgeuse Seven']
>>> person1
['Ford Prefect', 'Male', 'Researcher',
'Betelgeuse Seven']

When Not to Use Lists
We have our sample data (on the back of a napkin) and we’ve decided to store
the data in a list (as that’s all we know at this point in our Python travels).

Our first attempt takes the data values and puts them in a list:

>>> person2 = ['Name', 'Ford Prefect', 'Gender',
'Male', 'Occupation', 'Researcher', 'Home Planet',
'Betelgeuse Seven']
>>> person2
['Name', 'Ford Prefect', 'Gender', 'Male',
'Occupation', 'Researcher', 'Home Planet',
'Betelgeuse Seven']

This results in a list of string objects, which works. As shown above, the shell
confirms that the data values are now in a list called person1.

But we have a problem, in that we have to remember that the first index
location (at index value 0) is the person’s name, the next is the person’s gender
(at index value 1), and so on. For a small number of data items, this is not
a big deal, but imagine if this data expanded to include many more data
values (perhaps to support a profile page on that Facebook-killer you’re been
meaning to build). With data like this, using index values to refer to the data
in the person1 list is brittle, and best avoided.

Our second attempt adds the tags into the list, so that each data value is
preceded by its associated tag. Meet the person2 list:

This clearly works, but now we no longer have one problem; we have two.
Not only do we still have to remember what’s at each index location, but we
now have to remember that index values 0, 2, 4, 6, and so on are tags, while
index values 1, 3, 5, 7, and so on are data values.

Surely there has to be a better way to handle data with a structure like this?

There is, and it involves foregoing the use of lists for structured data like this.
We need to use something else, and in Python, that something else is called a
dictionary, which we get to in the next chapter.

Name: Ford Prefect
Gender: Male
Occupation: Researcher
Home Planet: Betelgeuse Seven

Does “person[1]”
refer to gender or
occupation? I can
never remember!

If the data you
want to store has
an identifiable
structure, consider
using something
other than a list.

92   Chapter 2

the code

Chapter 2’s Code, 1 of 2

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
for letter in word:
 if letter in vowels:
 print(letter)

The first version of the vowels program that displays *all* the vowels found in the word “Milliways” (including any duplicates).

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
found = []
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
for vowel in found:
 print(vowel)

The “vowels2.py” program
added code that used a list
to avoid duplicates. This
program displays the list of
unique vowels found in the
word “Milliways”.

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")
found = []
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
for vowel in found:
 print(vowel)

The third (and final) version of the vowels program for this chapter, “vowels3.py”, displays the unique vowels found in a word entered by our user.

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))

new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

It’s the best advice in the universe: “Don’t
panic!” This program, called “panic.py”,
takes a string containing this advice and,
using a bunch of list methods, transforms
the string into another string that
describes how the Head First editors
prefer their beer: “on tap”.

you are here 4   93

data

Chapter 2’s Code, 2 of 2

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

new_phrase = ''.join(plist[1:3])
new_phrase = new_phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])

print(plist)
print(new_phrase)

When it comes to manipulating lists, using
methods isn’t the only game in town. The
“panic2.py” program achieved the same end
using Python’s square bracket notation.

paranoid_android = "Marvin"
letters = list(paranoid_android)
for char in letters:
 print('\t', char)

The shortest program in this chapter, “marvin.py”, demonstrated how well lists play with Python’s “for” loop. (Just don’t tell Marvin...if he hears that his program is the shortest in this chapter, it’ll make him even more paranoid than he already is).

paranoid_android = "Marvin, the Paranoid Android"
letters = list(paranoid_android)
for char in letters[:6]:
 print('\t', char)
print()
for char in letters[-7:]:
 print('\t'*2, char)
print()
for char in letters[12:20]:
 print('\t'*3, char)

The “marvin2.py” program
showed off Python’s square
bracket notation by using three
slices to extract and display
fragments from a list of
letters.

this is a new chapter   95

structured data3

Working with Structured Data

Python’s list data structure is great, but it isn’t a data panacea.�
When you have truly structured data (and using a list to store it may not be the best

choice), Python comes to your rescue with its built-in dictionary. Out of the box, the

dictionary lets you store and manipulate any collection of key/value pairs. We look long

and hard at Python’s dictionary in this chapter, and—along the way—meet set and tuple,

too. Together with the list (which we met in the previous chapter), the dictionary, set, and

tuple data structures provide a set of built-in data tools that help to make Python and data

a powerful combination.

Lists are great, but I
sometimes need more
structure in my life...

96   Chapter 3

key: value

A Dict ionary Stores Key/Value Pairs
Unlike a list, which is a collection of related objects, the dictionary is used
to hold a collection of key/value pairs, where each unique key has a value
associated with it. The dictionary is often referred to as an associative array by
computer scientists, and other programming languages often use other names
for dictionary (such as map, hash, and table).

The key part of a Python dictionary is typically a string, whereas the
associated value part can be any Python object.

Data that conforms to the dictionary model is easy to spot: there are two
columns, with potentially multiple rows of data. With this in mind, take
another look at our “data napkin” from the end of the last chapter:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Name: Ford Prefect

Gender: Male
Occupation: Researcher

Home Planet: Betelgeuse Seven

Here’s one
column of
data...

...and here’s the second column of data.

There are
multiple rows of
two-columned
data on this
napkin.

>>> person3 = { 'Name': 'Ford Prefect',
	 'Gender': 'Male',
	 'Occupation': 'Researcher',
	 'Home Planet': 'Betelgeuse Seven' }

The name of
the dictionary.
(Recall that we
met “person1”
and “person2” at
the end of the
last chapter.)

The key The associated data value

Key Value

In C++ and Java, a
dictionary is known
as “map,” whereas
Perl and Ruby use
the name “hash.”

It looks like the data on this napkin is a perfect fit for Python’s dictionary.

Let’s return to the >>> shell to see how to create a dictionary using our
napkin data. It’s tempting to try to enter the dictionary as a single line of
code, but we’re not going to do this. As we want our dictionary code to be
easy to read, we’re purposely entering each row of data (i.e., each key/value
pair) on its own line instead. Take a look:

you are here 4   97

structured data

Make Dict ionaries Easy to Read
It’s tempting to take the four lines of code from the bottom of the last page and
type them into the shell like this:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary
>>> person3 = { 'Name': 'Ford Prefect', 'Gender':
'Male', 'Occupation': 'Researcher', 'Home Planet':
'Betelgeuse Seven' }

Although the interpreter doesn’t care which approach you use, entering a
dictionary as one long line of code is hard to read, and should be avoided
whenever possible.

If you litter your code with dictionaries that are hard to read, other
programmers (which includes you in six months’ time) will get upset...so take the
time to align your dictionary code so that it is easy to read.

Here’s a visual representation of how the dictionary appears in Python’s
memory after either of these dictionary-assigning statements executes:

person3

Gender Male

Name Ford Prefect

Home Planet Betelgeuse Seven

Occupation Researcher

Keys Value

The “person3” variable
references the entire
dictionary, which is
made up of a collection
of key/value pairs.

This is a more complicated structure than the array-like list. If the idea behind
Python’s dictionary is new to you, it’s often useful to think of it as a lookup
table. The key on the left is used to look up the value on the right (just like you
look up a word in a paper dictionary).

Let’s spend some time getting to know Python’s dictionary in more detail. We’ll
begin with a detailed explanation of how to spot a Python dictionary in your
code, before talking about some of this data structure’s unique characteristics
and uses.

98   Chapter 3

it’s a dictionary

How to Spot a Dict ionary in Code
Take a closer look at how we defined the person3 dictionary at the >>>
shell. For starters, the entire dictionary is enclosed in curly braces. Each key is
enclosed in quotes, as they are strings, as is each value, which are also strings
in this example. (Keys and values don’t have to be strings, however.) Each key
is separated from its associated value by a colon character (:), and each key/
value pair (a.k.a. “row”) is separated from the next by a comma:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

{ 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }

An opening curly
brace starts
each dictionary.

A closing curly
brace ends each
dictionary.

Each key is
enclosed in
quotes.

In this dictionary, the values are all string objects, so they are enclosed in quotes.

Each key/value pair is separated from the next by a comma.

A colon associates each
key with its value.

As stated earlier, the data on this napkin maps nicely to a Python dictionary.
In fact, any data that exhibits a similar structure—multiple two-columned
rows—is as perfect a fit as you’re likely to find. Which is great, but it does
come at a price. Let’s return to the >>> prompt to learn what this price is:

What happened to the insert ion order?
Take a long hard look at the dictionary displayed by the interpreter. Did you
notice that the ordering is different from what was used on input? When you
created the dictionary, you inserted the rows in name, gender, occupation,
and home planet order, but the shell is displaying them in gender, name,
home planet, and occupation order. The ordering has changed.

What’s going on here? Why did the ordering change?

>>> person3
{'Gender': 'Male', 'Name': 'Ford Prefect', 'Home
Planet': 'Betelgeuse Seven', 'Occupation': 'Researcher'}

Ask the shell
to display the
contents of the
dictionary... ...and there it is. All the key/value pairs are shown.

you are here 4   99

structured data

Insert ion Order Is NOT Maintained
Unlike lists, which keep your objects arranged in the order in which you
inserted them, Python’s dictionary does not. This means you cannot assume
that the rows in any dictionary are in any particular order; for all intents and
purposes, they are unordered.

Take another look at the person3 dictionary and compare the ordering on
input to that shown by the interpreter at the >>> prompt:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

If you’re scratching your head and wondering why you’d want to trust
your precious data to such an unordered data structure, don’t worry, as
the ordering rarely makes a difference. When you select data stored in a
dictionary, it has nothing to do with the dictionary’s order, and everything to
do with the key you used. Remember: a key is used to look up a value.

Dict ionaries understand square brackets
Like lists, dictionaries understand the square bracket notation. However,
unlike lists, which use numeric index values to access data, dictionaries use
keys to access their associated data values. Let’s see this in action at the
interpreter’s >>> prompt:

>>> person3 = { 'Name': 'Ford Prefect',
	 'Gender': 'Male',
	 'Occupation': 'Researcher',
	 'Home Planet': 'Betelgeuse Seven' }
>>> person3
{'Gender': 'Male', 'Name': 'Ford Prefect', 'Home Planet':
'Betelgeuse Seven', 'Occupation': 'Researcher'}

You insert your data into a dictionary in one order...
...but the interpreter
uses another
ordering.

>>> person3['Home Planet']
'Betelgeuse Seven'

>>> person3['Name']
'Ford Prefect'

Provide the key
between the square
brackets.

The data value associated with the key is shown.

Use keys to
access data in
a dictionary.

When you consider you can access your data in this way, it becomes apparent
that it does not matter in what order the interpreter stores your data.

100   Chapter 3

dictionaries love brackets

Value Lookup with Square Brackets
Using square brackets with dictionaries works the same as with lists. However,
instead of accessing your data in a specified slot using an index value, with Python’s
dictionary you access your data via the key associated with it.

As we saw at the bottom of the last page, when you place a key inside a dictionary’s
square brackets, the interpreter returns the value associated with the key. Let’s
consider those examples again to help cement this idea in your brain:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> person3['Home Planet']
'Betelgeuse Seven'

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

>>> person3['Name']
'Ford Prefect'

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

Dict ionary lookup is fast !
This ability to extract any value from a dictionary using its associated key is what
makes Python’s dictionary so useful, as there are lots of occasions when doing so is
needed—for instance, looking up user details in a profile, which is essentially what
we’re doing here with the person3 dictionary.

It does not matter in what order the dictionary is stored. All that matters is that the
interpreter can access the value associated with a key quickly (no matter how big
your dictionary gets). The good news is that the interpreter does just that, thanks to
the employment of a highly optimized hashing algorithm. As with a lot of Python’s
internals, you can safely leave the interpreter to handle all the details here, while
you get on with taking advantage of what Python’s dictionary has to offer.

Geek
 Bits

Python’s dictionary
is implemented as a
resizeable hash table,
which has been heavily
optimized for lots of
special cases. As a result,
dictionaries perform
lookups very quickly.

you are here 4   101

structured data

Working with Dict ionaries at Runt ime
Knowing how the square bracket notation works with dictionaries is central to
understanding how dictionaries grow at runtime. If you have an existing dictionary,
you can add a new key/value pair to it by assigning an object to a new key, which you
provide within square brackets.

For instance, here we display the current state of the person3 dictionary, then add
a new key/value pair that associates 33 with a key called Age. We then display the
person3 dictionary again to confirm the new row of data is successfully added:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> person3
{'Name': 'Ford Prefect', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven',
'Occupation': 'Researcher'}

Before the new
row is added

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

>>> person3
{'Name': 'Ford Prefect', 'Gender': 'Male',
'Age': 33, 'Home Planet': 'Betelgeuse Seven',
'Occupation': 'Researcher'}

>>> person3['Age'] = 33
Assign an object (in this case, a number) to a new key to add a row of data to the dictionary.

After the new
row is added

Before

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

Age 33 After

Here’s the new
row of data:
“33” is associated
with “Age”.

102   Chapter 3

remembering vowels3.py

Recap: Displaying Found Vowels (Lists)
As shown on the last page, growing a dictionary in this way can be used
in many different situations. One very common application is to perform
a frequency count: processing some data and maintaining a count of what
you find. Before demonstrating how to perform a frequency count using a
dictionary, let’s return to our vowel counting example from the last chapter.

Recall that vowels3.py determines a unique list of vowels found in a word.
Imagine you’ve now been asked to extend this program to produce output
that details how many times each vowel appears in the word.

Here’s the code from Chapter 2, which, given a word, displays a unique list of
found vowels:

This is “vowels3.py”,
which reports on
the unique vowels
found in a word.

Recall that we ran this code through IDLE a number of times:

you are here 4   103

structured data

How Can a Dict ionary Help Here?

I don’t get it. The “vowels3.py” program
works just fine...so why are you looking to
fix something that isn’t broken?

We aren’t.
The vowels3.py program does what it is
supposed to do, and using a list for this version
of the program’s functionality makes perfect
sense.

However, imagine if you need to not only list
the vowels in any word, but also report their
frequency. What if you need to know how many
times each vowel appears in a word?

If you think about it, this is a little harder to do
with lists alone. But throw a dictionary into the
mix, and things change.

Let’s explore using a dictionary with the vowels
program over the next few pages to satisfy this
new requirement.

Q: Is it just me, or is the word “dictionary” a strange name for something that’s basically a table?

A: No, it’s not just you. The word “dictionary” is what the Python documentation uses. In fact, most Python programmers use the shorter
“dict” as opposed to the full word. In its most basic form, a dictionary is a table that has exactly two columns and any number of rows.

104   Chapter 3

what’s the frequency, kenneth?

Select ing a Frequency Count Data Structure
We want to adjust the vowels3.py program to maintain a count of how often each
vowel is present in a word; that is, what is each vowel’s frequency? Let’s sketch out
what we expect to see as output from this program:

a
e
i
o
u

0
1
2
0
0

Given the word “hitchhiker”, here’s the

frequency count we expect to see:

Vowels in the
lefthand
column

Frequency
counts in the
righthand
column

This output is a perfect match with how the interpreter regards a dictionary. Rather
than using a list to store the found vowels (as is the case in vowels3.py), let’s use
a dictionary instead. We can continue to call the collection found, but we need to
initialize it to an empty dictionary as opposed to an empty list.

As always, let’s experiment and work out what we need to do at the >>> prompt,
before committing any changes to the vowels3.py code. To create an empty
dictionary, assign {} to a variable:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> found = {}
>>> found
{}

Curly braces on their own mean the dictionary starts out empty.

Let’s record the fact that we haven’t found any vowels yet by creating a row for each
vowel and initializing its associated value to 0. Each vowel is used as a key:

>>> found['a'] = 0
>>> found['e'] = 0
>>> found['i'] = 0
>>> found['o'] = 0
>>> found['u'] = 0
>>> found
{'o': 0, 'u': 0, 'a': 0, 'i': 0, 'e': 0}

We’ve initialized all the
vowel counts to 0. Note
how insertion order is
not maintained (but
that doesn’t matter
here).

All we need to do now is find a vowel in a given word, then update these frequency
counts as required.

you are here 4   105

structured data

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Updat ing a Frequency Counter
Before getting to the code that updates the frequency counts, consider how
the interpreter sees the found dictionary in memory after the dictionary
initialization code executes:

With the frequency counts initialized to 0, it’s not difficult to increment
any particular value, as needed. For instance, here’s how to increment e’s
frequency count:

o 0

u 0

a 0

i 0

e 0

found

>>> found
{'o': 0, 'u': 0, 'a': 0, 'i': 0, 'e': 0}
>>> found['e'] = found['e'] + 1
>>> found
{'o': 0, 'i': 0, 'a': 0, 'u': 0, 'e': 1}

Everything
is 0.

The dictionary has been
updated. The value
associated with “e” has
been incremented.

Increment e’s
count.

o 0

u 0

a 0

i 0

e 1

found

All the values
are initially
set to 0.

Code like that highlighted above certainly works, but having to repeat
found['e'] on either side of the assignment operator gets very old, very
quickly. So, let’s look at a shortcut for this operation (on the next page).

106   Chapter 3

plus equals

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Updat ing a Frequency Counter, v2.0
Having to put found['e'] on either side of the assignment operator
(=) quickly becomes tiresome, so Python supports the familiar +=
operator, which does the same thing, but in a more succinct way:

>>> found['e'] += 1
>>> found
{'o': 0, 'i': 0, 'a': 0, 'u': 0, 'e': 2}

Increment e’s
count (once more).

The dictionary
is updated
again.At this point, we’ve incremented the value associated with the e key twice,

so here’s how the dictionary looks to the interpreter now:

o 0

u 0

a 0

i 0

e 2

found

Q: Does Python have ++?

A: No...which is a bummer. If you’re a fan of the ++ increment
operator in other programming languages, you’ll just have to get used
to using += instead. Same goes for the -- decrement operator:
Python doesn’t have it. You need to use -= instead.

Q: Is there a handy list of operators?

A: Yes. Head over to https://docs.python.org/3/reference/lexical_
analysis.html#operators for a list, and then see https://docs.python.
org/3/library/stdtypes.html for a detailed explanation of their usage in
relation to Python’s built-in types.

Thanks to the += operator, the value associated with the ‘e’ key has been incremented once more.

https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

you are here 4   107

structured data

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Iterat ing Over a Dict ionary
At this point, we’ve shown you how to initialize a dictionary with zeroed
data, as well as update a dictionary by incrementing a value associated
with a key. We’re nearly ready to update the vowels3.py program to
perform a frequency count based on vowels found in a word. However,
before doing so, let’s determine what happens when we iterate over a
dictionary, as once we have the dictionary populated with data, we’ll
need a way to display our frequency counts on screen.

You’d be forgiven for thinking that all we need to do here is use the
dictionary with a for loop, but doing so produces unexpected results:

>>> for kv in found:
		 print(kv)

o
i
a
u
e

We iterate over the
dictionary in the usual
way, using a “for” loop.
Here, we’re using “kv” as
shorthand for “key/value
pair” (but could’ve used
any variable name).

The iteration worked, but
this isn’t what we were
expecting. Where have the
frequency counts gone?
This output is only showing
the keys...

Flip the page to learn what
happened to the values.

Something’s really not right
with this output. The keys are
being displayed, but not their
associated values. What gives?

108   Chapter 3

k and found[k]

Iterat ing Over Keys and Values
When you iterated over a dictionary with your for loop, the interpreter only
processed the dictionary’s keys.

To access the associated data values, you need to put each key within square
brackets and use it together with the dictionary name to gain access to the
values associated with the key.

The version of the loop shown below does just that, providing not just the
keys, but also their associated data values. We’ve changed the suite to access
each value based on each key provided to the for loop.

As the for loop iterates over each key/value pair in the dictionary, the
current row’s key is assigned to k, then found[k] is used to access its
associated value. We’ve also produced more human-friendly output by
passing two strings to the call to the print function:

>>> for k in found:
		 print(k, 'was found', found[k], 'time(s).')

o was found 0 time(s).
i was found 0 time(s).
a was found 0 time(s).
u was found 0 time(s).
e was found 2 time(s).

We’re using “k” to represent the key, and “found[k]” to access the value.

This is more like it. The keys and the
values are being processed by the loop and
displayed on screen.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

If you are following along at your >>> prompt and your output is ordered
differently from ours, don’t worry: the interpreter uses a random internal
ordering as you’re using a dictionary here, and there are no guarantees
regarding ordering when one is used. Your ordering will likely differ from
ours, but don’t be alarmed. Our primary concern is that the data is safely
stored in the dictionary, which it is.

The above loop obviously works. However, there are two points that we’d like
to make.

Firstly: it would be nice if the output was ordered a, e, i, o, u, as opposed to
randomly, wouldn’t it?

Secondly: even though this loop clearly works, coding a dictionary iteration in
this way is not the preferred approach—most Python programmers code this
differently.

Let’s explore these two points in a bit more detail (after a quick review).

you are here 4   109

structured data

Dict ionaries: What We Already Know
Here’s what we know about Python’s dictionary data structure so far:

Specifying the ordering of a dict ionary on output
We want to be able to produce output from the for loop in a, e, i, o, u
order as opposed to randomly. Python makes this trivial thanks to the
inclusion of the sorted built-in function. Simply pass the found dictionary
to the sorted function as part of the for loop to arrange the output
alphabetically:

>>> for k in sorted(found):
		 print(k, 'was found', found[k], 'time(s).')

a was found 0 time(s).
e was found 2 time(s).
i was found 0 time(s).
o was found 0 time(s).
u was found 0 time(s).

It’s a small change to the loop’s code, but... it packs quite the punch. Look: the output is sorted in “a, e, i, o, u” order.

That’s point one of two dealt with. Next up is learning about the approach
that most Python programmers prefer over the above code (although the
approach shown on this page is often used, so you still need to know about it).

�� �Think of a dictionary as a collection of rows, with each
row containing exactly two columns. The first column
stores a key, while the second contains a value.

�� �Each row is known as a key/value pair, and a dictionary
can grow to contain any number of key/value pairs. Like
lists, dictionaries grow and shrink on demand.

�� A dictionary is easy to spot: it’s enclosed in curly braces,
with each key/value pair separated from the next by a
comma, and each key separated from its value by a
colon.

�� �Insertion order is not maintained by a dictionary. The
order in which rows are inserted has nothing to do with
how they are stored.

�� �Accessing data in a dictionary uses the square bracket
notation. Put a key inside square brackets to access its
associated value.

�� �Python’s for loop can be used to iterate over a
dictionary. On each iteration, the key is assigned to the
loop variable, which is used to access the data value.

110   Chapter 3

the items idiom

Iterat ing Over a Dict ionary with “items”
We’ve seen that it’s possible to iterate over the rows of data in a dictionary using this
code:

>>> for k in sorted(found):
		 print(k, 'was found', found[k], 'time(s).')

a was found 0 time(s).
e was found 2 time(s).
i was found 0 time(s).
o was found 0 time(s).
u was found 0 time(s).

Like lists, dictionaries have a bunch of built-in methods, and one of these is the
items method, which returns a list of the key/value pairs. Using items with for is
often the preferred technique for iterating over a dictionary, as it gives you access to the
key and the value as loop variables, which you can then use in your suite. The resulting
suite is easier on the eye, which makes it easier to read.

Here is the items equivalent of the above loop code. Note how there are now two
loop variables in this version of the code (k and v), and that we continue to use the
sorted function to control the output ordering:

Q: Why are we calling sorted again in the second loop? The first loop arranged the dictionary in the ordering we want, so this
must mean we don’t have to sort it a second time, right?

A: No, not quite. The sorted built-in function doesn’t change the ordering of the data you provide to it, but instead returns an ordered
copy of the data. In the case of the found dictionary, this is an ordered copy of each key/value pair, with the key being used to determine
the ordering (alphabetical, from A through Z). The original ordering of the dictionary remains intact, which means every time we need to iterate
over the key/value pairs in some specific order, we need to call sorted, as the random ordering still exists in the dictionary.

>>> for k, v in sorted(found.items()):
		 print(k, 'was found', v, 'time(s).')

a was found 0 time(s).
e was found 2 time(s).
i was found 0 time(s).
o was found 0 time(s).
u was found 0 time(s).

Same output
as before... ...but this code is so much easier to read.

We invoke the
“items” method
on the “found”
dictionary.

The “items”
method passes
back two loop
variables.

you are here 4   111

structured data

Frequency Count Magnets
Having concluded our experimentation at the >>> prompt, it’s now time
to make changes to the vowels3.py program. Below are all of the code
snippets we think you might need. Your job is to rearrange the magnets to
produce a working program that, when given a word, produces a frequency
count for each vowel found.

found.items()

+= 1

found[letter]

k, v

found['a'] = 0
found['e'] = 0
found['i'] = 0
found['o'] = 0
found['u'] = 0

found = {}

Where do all these
go? Be careful: not
all these magnets are
needed.

found = []

found

k

vkey

value

Decide which code
magnet goes in each
of the dashed-line
locations to create
“vowels4.py”.

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

for letter in word:

 if letter in vowels:

for in sorted():

 print(, 'was found', , 'time(s).')

Once you’ve placed the magnets where you think they should go, bring
vowels3.py into IDLE’s edit window, rename it vowels4.py, and then
apply your code changes to the new version of this program.

112   Chapter 3

how many vowels

Frequency Count Magnets Solution
Having concluded our experimentation at the >>> prompt, it was time to
make changes to the vowels3.py program. Your job was to rearrange the
magnets to produce a working program that, when given a word, produces
a frequency count for each vowel found.

Once you’d placed the magnets where you thought they should go,
you were to bring vowels3.py into an IDLE’s edit window, rename it
vowels4.py, and then apply your code changes to the new version of
this program.

found.items()

+= 1found[letter]

k, v

found['a'] = 0
found['e'] = 0
found['i'] = 0
found['o'] = 0
found['u'] = 0

found = {}

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

for letter in word:

 if letter in vowels:

for in sorted():

 print(, 'was found', , 'time(s).')k v

These magnets
weren’t needed.

found = []

found

key

value

Create an empty
dictionary.

Initialize the value
associated with each
of the keys (each
vowel) to 0.

Increment the value referred to by
“found[letter]” by one.

As the “for” loop
is using the “items”
method, we need
to provide two loop
variables, “k” for
the key and “v” for
the value.

Invoke the
“items” method
on the “found”
dictionary to
access each row
of data with
each iteration.The key and the value

are used to create
each output message.

This is the
“vowels4.py”
program.

you are here 4   113

structured data

Test Drive
Let’s take vowels4.py for a spin. With your code in an IDLE edit window, press F5 to see how it
performs:

The “vowels4.py”
code

We ran the code three
times to see how well it
performs.

These three “runs”
produce the output we
expect them to.

I like where this is going.
But do I really need to
be told when a vowel isn’t
found?

114   Chapter 3

no more zeros

Just How Dynamic Are Dict ionaries?
The vowels4.py program reports on all the found vowels, even when they
aren’t found. This may not bother you, but let’s imagine that it does and you
want this code to only display results when results are actually found. That is,
you don’t want to see any of those “found 0 time(s)” messages.

How might you go about solving this problem?

Python’s dictionary is dynamic, right? So,
all we have to do is remove those five lines
that initialize each vowel’s frequency count?
With those lines gone, only found vowels will be

counted, right?

That sounds like it might work.
We currently have five lines of code near
the start of the vowels4.py program
that we’ve included in order to initially set
each vowel’s frequency count to 0. This
creates a key/value pair for each vowel, even
though some may never be used. If we take
those five lines away, we should end up only
recording frequency counts for found vowels,
and ignore the rest.

Let’s give this idea a try.

Do this!

Take the code in vowels4.py
and save it as vowels5.py.
Then remove the five lines of
initialization code. Your IDLE
edit window should look like
that on the right of this page.

This is the “vowels5.py” code with the initialization code removed.

you are here 4   115

structured datastructured data

Test Drive
You know the drill. Make sure vowels5.py is in an IDLE edit window, then press F5 to run your
program. You’ll be confronted by a runtime error message:

It’s clear that removing the five lines of initialization code wasn’t the way to go here. But why has this
happened? The fact that Python’s dictionary grows dynamically at runtime should mean that this code
cannot crash, but it does. Why are we getting this error?

Dict ionary keys must be init ialized
Removing the initialization code has resulted in a runtime error, specifically
a KeyError, which is raised when you try to access a value associated with
a nonexistent key. Because the key can’t be found, the value associated with it
can’t be found either, and you get an error.

Does this mean that we have to put the initialization code back in? After all, it
is only five short lines of code, so what’s the harm? We can certainly do this,
but let’s think about doing so for a moment.

Imagine that, instead of five frequency counts, you have a requirement to
track a thousand (or more). Suddenly, we have lots of initialization code. We
could “automate” the initialization with a loop, but we’d still be creating a
large dictionary with lots of rows, many of which may end up never being
used.

If only there were a way to create a key/value pair on the fly, just as soon as
we realize we need it.

This can’t
be good.

I wonder does the “in”
operator work with
dictionaries?

That’s a great question.
We first met in when checking lists for a value.
Maybe in works with dictionaries, too?

Let’s experiment at the >>> prompt to find out.

Geek Bits

An alternative approach to
handling this issue is to deal
with the run-time exception
raised here (which is a

“KeyError” in this example).
We’re holding off talking
about how Python handles
run-time exceptions until a
later chapter, so bear with
us for now.

116   Chapter 3

check with in

Avoiding KeyErrors at Runt ime
As with lists, it is possible to use the in operator to check whether a key exists in a
dictionary; the interpreter returns True or False depending on what’s found.

Let’s use this fact to avoid that KeyError exception, because it can be annoying
when your code stops as a result of this error being raised during an attempt to
populate a dictionary at runtime.

To demonstrate this technique, we’re going to create a dictionary called fruits,
then use the in operator to avoid raising a KeyError when accessing a
nonexistent key. We start by creating an empty dictionary; then we assign a
key/value pair that associates the value 10 with the key apples. With the row
of data in the dictionary, we can use the in operator to confirm that the key
apples now exists:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> fruits = {}
{}
>>> fruits['apples'] = 10
>>> fruits
{'apples': 10}
>>> 'apples' in fruits
True

This is all as expected. The value is associated with the key, and there’s no runtime error when we use the “in” operator to check for the key’s existence.

Before we do anything else, let’s consider how the interpreter views the fruits
dictionary in memory after executing the above code:

10fruits
The “apples” key
is associated with the value 10.

Q: I take it from the example on this page that Python uses the constant value True for true? Is there a False, too, and does
case matter when using either of these values?

A: Yes, to all those questions. When you need to specify a boolean in Python, you can use either True or False. These are constant
values provided by the interpreter, and must be specified with a leading uppercase letter, as the interpreter treats true and false as
variable names, not boolean values, so care is needed here.

apples

you are here 4   117

structured data

Checking for Membership with “in”
Let’s add in another row of data to the fruits dictionary for bananas and
see what happens. However, instead of a straight assignment to bananas,
(as was the case with apples), let’s increment the value associated with
bananas by 1 if it already exists in the fruits dictionary or, if it doesn’t
exist, let’s initialize bananas to 1. This is a very common activity, especially
when you’re performing frequency counts using a dictionary, and the logic we
employ should hopefully help us avoid a KeyError.

>>> if 'bananas' in fruits:
	 fruits['bananas'] += 1
else:
	 fruits['bananas'] = 1

>>> fruits
{'bananas': 1, 'apples': 10}

We check to see if the “bananas” key
is in the dictionary, and as it isn’t, we
initialize its value to 1. Critically, we
avoid any possibility of a “KeyError”.

We’ve set the “bananas” value to 1.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

apples 10fruits
Before the

“bananas” code runs

In the code that follows, the in operator in conjunction with an if statement
avoids any slip-ups with bananas, which—as wordplays go—is pretty bad
(even for us):

The above code changes the state of the fruits dictionary within the
interpreter’s memory, as shown here:

apples 10
fruits

After the “bananas”
code runs.

bananas 1

As expected, the fruits dictionary has grown by one key/value pair, and
the bananas value has been initialized to 1. This happened because the
condition associated with the if statement evaluated to False (as the key
wasn’t found), so the second suite (that is, the one associated with else)
executed instead. Let’s see what happens when this code runs again.

Geek Bits

If you are familiar with the ?:
ternary operator from other
languages, note that Python
supports a similar construct. You
can say this:

x = 10 if y > 3 else 20

to set x to either 10 or 20
depending on whether or not the
value of y is greater than 3. That
said, most Python programmers
frown on its use, as the equivalent
if... else... statements
are considered easier to read.

118   Chapter 3

one more time

Ensuring Init ializat ion Before Use
If we execute the code again, the value associated with bananas should now
be increased by 1, as the if suite executes this time due to the fact that the
bananas key already exists in the fruits dictionary:

>>> if 'bananas' in fruits:
	 fruits['bananas'] += 1
else:
	 fruits['bananas'] = 1

>>> fruits
{'bananas': 2, 'apples': 10}

This time around, the “bananas” key does exist in the dictionary, so we increment its value by 1. As before, our use of “if” and “in” together stop a “KeyError” exception from crashing this code.

We’ve increased the “bananas” value by 1.

apples 10
fruits

Before the “bananas” code runs (again)
bananas 1

apples 10
fruits After the “bananas”

code runs, the value
associated with
“bananas” has increased.

bananas 2

To run this code again, press Ctrl-P (on a Mac) or Alt-P (on Linux/Windows) to
cycle back through your previously entered code statements while at IDLE’s >>>
prompt (as using the up arrow to recall input doesn’t work at IDLE’s >>> prompt).
Remember to press Enter twice to execute the code once more:

As the code associated with the if statement now executes, the value associated
with bananas is incremented within the interpreter’s memory:

This mechanism is so common that many Python programmers shorten these four
lines of code by inverting the condition. Instead of checking with in, they use
not in. This allows you to initialize the key to a starter value (usually 0) if it isn’t
found, then perform the increment right after.

Let’s take a look at how this mechanism works.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

you are here 4   119

structured data

Subst itut ing “not in” for “in”
At the bottom of the last page, we stated that most Python programmers refactor
the original four lines of code to use not in instead of in. Let’s see this in
action by using this mechanism to ensure the pears key is set to 0 before we try
to increment its value: object

object

object

object

key#1

key#2

key#3

key#4

Dictionary>>> if 'pears' not in fruits:
	 fruits['pears'] = 0

>>> fruits['pears'] += 1
>>> fruits
{'bananas': 2, 'pears': 1, 'apples': 10}

Initialize (if needed).

Increment.

apples 10

fruits After the two
lines of “pears”
code runs

bananas 2

pears 1

These three lines of code have grown the dictionary once more. There are now
three key/value pairs in the fruits dictionary:

The above three lines of code are so common in Python that the language
provides a dictionary method that makes this if/not in combination more
convenient and less error prone. The setdefault method does what the two-
line if/not in statements do, but uses only a single line of code.

Here’s the equivalent of the pears code from the top of the page rewritten to
use setdefault:

>>> fruits.setdefault('pears', 0)
>>> fruits['pears'] += 1
>>> fruits
{'bananas': 2, 'pears': 2, 'apples': 10}

Initialize (if needed).

Increment.

apples 10

fruits bananas 2

pears 2
The single call to setdetfault has replaced the two-line
if/not in statement, and its usage guarantees that a key
is always initialized to a starter value before it’s used. Any
possibility of a KeyError exception is negated. The current
state of the fruits dictionary is shown here (on the right) to
confirm that invoking setdefault after a key already exists
has no effect (as is the case with pears), which is exactly
what we want in this case.

120   Chapter 3

long live setdefault

Putt ing the “setdefault” Method to Work
Recall that our current version of vowels5.py results in a runtime error,
specifically a KeyError, which is raised due to our code trying to access the
value of a nonexistent key:

This code
produces
this error.

From our experiments with fruits, we know we can call setdefault
as often as we like without having to worry about any nasty errors. We
know setdefault’s behavior is guaranteed to initialize a nonexistent key
to a supplied default value, or to do nothing (that is, to leave any existing
value associated with any existing key alone). If we invoke setdefault
immediately before we try to use a key in our vowels5.py code, we are
guaranteed to avoid a KeyError, as the key will either exist or it won’t.
Either way, our program keeps running and no longer crashes (thanks to our
use of setdefault).

Within your IDLE edit window, change the first of the vowels5.py
program’s for loops to look like this (by adding the call to setdefault),
then save your new version as vowels6.py:

for letter in word:
 if letter in vowels:
 found.setdefault(letter, 0)
 found[letter] += 1

Use “setdefault”
to help avoid
the “KeyError”
exception.

A single line of code
can often make all
the difference.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

you are here 4   121

structured datastructured data

Test Drive
With the most recent vowels6.py program in your IDLE edit window, press F5. Run this version a
few times to confirm the nasty KeyError exception no longer appears.

The use of the setdefault method has solved the KeyError problem
we had with our code. Using this technique allows you to dynamically grow a
dictionary at runtime, safe in the knowledge that you’ll only ever create a new
key/value pair when you actually need one.

When you use setdefault in this way, you never need to spend time
initializing all your rows of dictionary data ahead of time.

Dict ionaries: updat ing what we already know
Let’s add to the list of things you now know about Python’s dictionary:

This is looking good. The “KeyError” is gone.

�� By default, every dictionary is unordered, as insertion
order is not maintained. If you need to sort a dictionary
on output, use the sorted built-in function.

�� The items method allows you to iterate over a
dictionary by row—that is, by key/value pair. On each
iteration, the items method returns the next key and
its associated value to your for loop.

�� Trying to access a nonexistent key in an existing
dictionary results in a KeyError. When a
KeyError occurs, your program crashes with a
runtime error.

�� You can avoid a KeyError by ensuring every key
in your dictionary has a value associated with it before
you try to access it. Although the in and not in
operators can help here, the established technique is to
use the setdefault method instead.

122   Chapter 3

how much more?

Aren’t Dict ionaries (and Lists) Enough?

We’ve been talking about data structures
for ages...how much more of this is there?
Surely dictionaries—together with lists—
are all I’ll need most of the time?

Dictionaries (and lists) are great.
But they are not the only show in town.

Granted, you can do a lot with dictionaries and
lists, and many Python programmers rarely
need anything more. But, if truth be told, these
programmers are missing out, as the two remaining
built-in data structures—set and tuple—are useful
in specific circumstances, and using them can greatly
simplify your code, again in specific circumstances.

The trick is spotting when the specific circumstances
occur. To help with this, let’s look at typical examples
for both set and tuple, starting with set.

Q: Is that it for dictionaries? Surely it’s common for the value part of a dictionary to be, for instance, a list or another dictionary?

A: Yes, that is a common usage. But we’re going to hang on until the end of this chapter to show you how to do this. In the meantime, let
what you already know about dictionaries sink in...

you are here 4   123

structured data

Sets Don’t Allow Duplicates
Python’s set data structure is just like the sets you learned about in school: it has
certain mathematical properties that always hold, the key characteristic being that
duplicate values are forbidden.

Imagine you are provided with a long list of all the first names for everyone in a large
organization, but you are only interested in the (much smaller) list of unique first
names. You need a quick and foolproof way to remove any duplicates from your long
list of names. Sets are great at solving this type of problem: simply convert the long
list of names to a set (which removes the duplicates), then convert the set back to a list
and—ta da!—you have a list of unique first names.

Python’s set data structure is optimized for very speedy lookup, which makes using a
set much faster than its equivalent list when lookup is the primary requirement. As lists
always perform slow sequential searches, sets should always be preferred for lookup.

Spott ing sets in your code
Sets are easy to spot in code: a collection of objects are separated from one another by
commas and surrounded by curly braces.

For example, here’s a set of vowels:

The fact that a set is enclosed in curly braces can often result in your brain mistaking a
set for a dictionary, which is also enclosed in curly braces. The key difference is the use
of the colon character (:) in dictionaries to separate keys from values. The colon never
appears in a set, only commas.

In addition to forbidding duplicates, note that—as in a dictionary—insertion order
is not maintained by the interpreter when a set is used. However. like all other data
structures, sets can be ordered on output with the sorted function. And, like lists and
dictionaries, sets can also grow and shrink as needed.

Being a set, this data structure can perform set-like operations, such as difference,
intersection, and union. To demonstrate sets in action, we are going to revisit our vowel
counting program from earlier in this chapter once more. We made a promise when
we were first developing vowels3.py (in the last chapter) that we’d consider a set
over a list as the primary data structure for that program. Let’s make good on that
promise now.

>>> vowels = { 'a', 'e', 'e', 'i', 'o', 'u', 'u' }
>>> vowels
{'e', 'u', 'a', 'i', 'o'}

Sets start and end with a curly brace.

Objects are separated from one another by a comma.

Check out the ordering.
It’s changed from what was
originally inserted, and the
duplicates are gone too.

object b
object f

object a object e

object d

object c

Set

124   Chapter 3

sets hate duplicates

Creat ing Sets Eff icient ly
Let’s take yet another look at vowels3.py, which uses a list to work out which
vowels appear in any word.

Here’s the code once more. Note how we have logic in this program to ensure we
only remember each found vowel once. That is, we are very deliberately ensuring
that no duplicate vowels are ever added to the found list:

This is “vowels3.py”,
which reports on
the unique vowels
found in a word.
This code uses a list
as its primary data
structure.

We never allow duplicates
in the “found” list.

Before continuing, use IDLE to save this code as vowels7.py so that we can
make changes without having to worry about breaking our list-based solution
(which we know works). As is becoming our standard practice, let’s experiment at
the >>> prompt first before adjusting the vowels7.py code. We’ll edit the code
in the IDLE edit window once we’ve worked out the code we need.

Creat ing sets from sequences
We start by creating a set of vowels using the code from the middle of the last
page (you can skip this step if you’ve already typed that code into your >>>
prompt):

>>> vowels = { 'a', 'e', 'e', 'i', 'o', 'u', 'u' }
>>> vowels
{'e', 'u', 'a', 'i', 'o'}

Below is a useful shorthand that allows you to pass any sequence (such as a string)
to the set function to quickly generate a set. Here’s how to create the set of
vowels using the set function:

>>> vowels2 = set('aeeiouu')
>>> vowels2
{'e', 'u', 'a', 'i', 'o'}

These two lines of code do the same thing: both assign a new set object to a variable.

object b
object f

object a object e

object d

object c

Set

you are here 4   125

structured data

Taking Advantage of Set Methods
Now that we have our vowels in a set, our next step is to take a word and
determine whether any of the letters in the word are vowels. We could do this by
checking whether each letter in the word is in the set, as the in operator works
with sets in much the same way as it does with dictionaries and lists. That is,
we could use in to determine whether a set contains any letter, and then cycle
through the letters in the word using a for loop.

However, let’s not follow that strategy here, as the set methods can do a lot of this
looping work for us.

There’s a much better way to perform this type of operation when using sets. It
involves taking advantage of the methods that come with every set, and that
allow you to perform operations such as union, difference, and intersection. Prior
to changing the code in vowels7.py, let’s learn how these methods work by
experimenting at the >>> prompt and considering how the interpreter sees the
set data. Be sure to follow along on your computer. Let’s start by creating a set of
vowels, then assigning a value to the word variable:

>>> vowels = set('aeiou')
>>> word = 'hello'

The interpreter creates two objects: one set and one string. Here’s what the
vowels set looks like in the interpreter’s memory:

Let’s see what happens when we perform a union of the vowels set and the set
of letters created from the value in the word variable. We’ll create a second set
on-the-fly by passing the word variable to the set function, which is then passed
to the union method provided by vowels. The result of this call is another
set, which we assign to another variable (called u here). This new variable is a
combination of the objects in both sets (a union):

a o

u

i

e

vowels
The set
contains the five letter
objects.

>>> u = vowels.union(set(word))

Python converts the value in “word” into a set of letter objects (removing any duplicates as it does so).

The “union” method combines one set with another, which is then assigned to a new variable called “u” (which is another set).

After this call to the union method, what do
the vowels and u sets look like?

object b
object f

object a object e

object d

object c

Set

126   Chapter 3

fun with sets

union Works by Combining Sets
At the bottom of the previous page we used the union method to create a
new set called u, which was a combination of the letters in the vowels set
together with the set of unique letters in word. The act of creating this new
set has no impact on vowels, which remains as it was before the union.
However, the u set is new, as it is created as a result of the union.

Here’s what happens:

u = vowels.union(set(word))

h

ol

e
set(word)

The word “hello” is turned into a set, which results
in duplicate letters being removed.

a o

u

i

e

vowels

The set of vowels

a o

u

i

e

l

h The “u” set consists of all the unique objects from
both sets.

What happened to the loop code?
That single line of code packs a lot of punch. Note that you haven’t
specifically instructed the interpreter to perform a loop. Instead, you told the
interpreter what you wanted done—not how you wanted it done—and the
interpreter has obliged by creating a new set containing the objects you’re
after.

A common requirement (now that we’ve created the union) is to turn the
resulting set into a sorted list. Doing so is trivial, thanks to the sorted and
list functions:

>>> u_list = sorted(list(u))
>>> u_list
['a', 'e', 'h', 'i', 'l', 'o', 'u']

A sorted list of
unique letters

u

object b
object f

object a object e

object d

object c

Set

you are here 4   127

structured data

difference Tells You What’s Not Shared
Another set method is difference, which, given two sets, can tell you
what’s in one set but not the other. Let’s use difference in much the same
way as we did with union and see what we end up with:

>>> d = vowels.difference(set(word))
>>> d
{'u', 'i', 'a'}

d = vowels.difference(set(word))

h

ol

e
set(word)

The word “hello” is
turned into a set.

a o

u

i

e

vowels

The set of vowels

a

u

i

The “d” set consists of
all the objects in “vowels” that aren’t in “set(word)”.

The difference function compares the objects in vowels against the
objects in set(word), then returns a new set of objects (called d here)
which are in the vowels set but not in set(word).

Here’s what happens:

We once again draw your attention to the fact that this outcome has been
accomplished without using a for loop. The difference function does all
the grunt work here; all we did was state what was required.

Flip over to the next page to look at one final set method: intersection.

d

object b
object f

object a object e

object d

object c

Set

128   Chapter 3

what is shared

intersect ion Reports on Commonality
The third set method that we’ll look at is intersection, which takes the
objects in one set and compares them to those in another, then reports on any
common objects found.

In relation to the requirements that we have with vowels7.py, what the
intersection method does sounds very promising, as we want to know which
of the letters in the user’s word are vowels.

Recall that we have the string "hello" in the word variable, and our vowels in
the vowels set. Here’s the intersection method in action:

>>> i = vowels.intersection(set(word))
>>> i
{'e', 'o'}

The intersection method confirms the vowels e and o are in the word
variable. Here’s what happens:

i = vowels.intersection(set(word))

h

ol

e
set(word)

The word “hello” is
turned into a set.

a o

u

i

e

vowels

The set of vowels

o
e

The “i” set consists of all
the objects in “vowels” that
are also in “set(word)”.

There are more set methods than the three we’ve looked at over these last few
pages, but of the three, intersection is of most interest to us here. In a single
line of code, we’ve solved the problem we posed near the start of the last chapter:
identify the vowels in any string. And all without having to use any loop code. Let’s
return to the vowels7.py program and apply what we know now.

i

object b
object f

object a object e

object d

object c

Set

you are here 4   129

structured data

Here is the code to the vowels3.py program once more.

Based on what you now know about sets, grab your pencil and
strike out the code you no longer need. In the space provided on
the right, provide the code you’d add to convert this list-using
program to take advantage of a set.

Hint: you’ll end up with a lot less code.

Sets: What You Already Know
Here’s a quick rundown of what you already know about Python’s set data
structure:

�� Sets in Python do not allow duplicates.

�� Like dictionaries, sets are enclosed in curly braces,
but sets do not identify key/value pairs. Instead, each
unique object in the set is separated from the next by a
comma.

�� Also like dictionaries, sets do not maintain insertion
order (but can be ordered with the sorted function).

�� You can pass any sequence to the set function
to create a set of elements from the objects in the
sequence (minus any duplicates).

�� Sets come pre-packaged with lots of built-in functionality,
including methods to perform union, difference, and
intersection.

When you’re done, be sure to rename your file vowels7.py.

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

found = []

for letter in word:

 if letter in vowels:

 if letter not in found:

 found.append(letter)

for vowel in found:

 print(vowel)

130   Chapter 3

vowels with sets

Here is the code to the vowels3.py program once more.

Based on what you now know about sets, you were to grab your
pencil and strike out the code you no longer needed. In the space
provided on the right, you were to provide the code you’d add to
convert this list-using program to take advantage of a set.

Hint: you’ll end up with a lot less code.

When you were done, you were to rename your file vowels7.py.

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

found = []

for letter in word:

 if letter in vowels:

 if letter not in found:

 found.append(letter)

for vowel in found:

 print(vowel)

vowels = set('aeiou')

found = vowels.intersection(set(word))

These five lines
of list-processing code are replaced by a single line of set code.

Create a set
of vowels.

I feel cheated...all that time wasted
learning about lists and dictionaries, and
the best solution to this vowels problem
all along was to use a set? Seriously?

It wasn’t a waste of time.
Being able to spot when to use one built-in data
structure over another is important (as you’ll want to
be sure you’re picking the right one). The only way you
can do this is to get experience using all of them. None
of the built-in data structures qualify as a “one size
fits all” technology, as they all have their strengths and
weaknesses. Once you understand what these are, you’ll
be better equipped to select the correct data structure
based on your application’s specific data requirements.

There’s lots of
code to get rid of.

you are here 4   131

structured data

Test Drive
Let’s take vowels7.py for a spin to confirm that the set-based version of our program runs as
expected:

Our latest code

Everything is working as expected.
Using a set was the perfect choice here ...
But that’s not to say that the two other data structures don’t have their
uses. For instance, if you need to perform, say, a frequency count, Python’s
dictionary works best. However, if you are more concerned with maintaining
insertion order, then only a list will do...which is almost true. There’s one
other built-in data structure that maintains insertion order, and which we’ve
yet to discuss: the tuple.

Let’s spend the remainder of this chapter in the company of Python’s tuple.

132   Chapter 3

why?

Making the Case for Tuples
When most programmers new to Python first come across the tuple, they
question why such a data structure even exists. After all, a tuple is like a list
that cannot be changed once it’s created (and populated with data). Tuples
are immutable: they cannot change. So, why do we need them?

It turns out that having an immutable data structure can often be useful.
Imagine that you need to guard against side effects by ensuring some data
in your program never changes. Or perhaps you have a large constant list
(which you know won’t change) and you’re worried about performance.
Why incur the cost of all that extra (mutable) list processing code if you’re
never going to need it? Using a tuple in these cases avoids unnecessary
overhead and guards against nasty data side effects (were they to occur).

How to spot a tuple in code
As tuples are closely related to lists, it’s no surprise that they look similar
(and behave in a similar way. Tuples are surrounded by parentheses,
whereas lists use square brackets. A quick visit to the >>> prompt lets us
compare tuples with lists. Note how we’re using the type built-in function
to confirm the type of each object created:

object

object

object

Tuple

0

1

2

>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> type(vowels)
<class 'list'>
>>> vowels2 = ('a', 'e', 'i', 'o', 'u')
>>> type(vowels2)
<class 'tuple'>

There’s nothing
new here. A list of
vowels is created.

The “type”
built-in
function reports the type of any
object.

This tuple looks
like a list, but
isn’t. Tuples are
surrounded by
parentheses (not square brackets).Now that vowels and vowels2 exist (and are populated with data), we

can ask the shell to display what they contain. Doing so confirms that the
tuple is not quite the same as the list:

>>> vowels
['a', 'e', 'i', 'o', 'u']
>>> vowels2
('a', 'e', 'i', 'o', 'u')

The
parentheses
indicate that
this is a tuple.

But what happens if we try to change a tuple?

Q: Where does the name “tuple” come from?

A: It depends whom you ask, but the name has
its origin in mathematics. Find out more than you’d
ever want to know by visiting https://en.wikipedia.
org/wiki/Tuple.

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Tuple

you are here 4   133

structured data

object

object

object

Tuple

0

1

2Tuples Are Immutable
As tuples are sort of like lists, they support the same square bracket notation
commonly associated with lists. We already know that we can use this
notation to change the contents of a list. Here’s what we’d do to change the
lowercase letter i in the vowels list to be an uppercase I:

>>> vowels[2] = 'I'
>>> vowels
[' a', 'e', 'I', 'o', 'u']

Assign an uppercase “I” to the third element of the “vowels” list.

As expected, the third element in the list (at index location 2) has changed,
which is fine and expected, as lists are mutable. However, look what happens
if we try to do the same thing with the vowels2 tuple:

>>> vowels2[2] = 'I'
Traceback (most recent call last):
 File "<pyshell#16>", line 1, in <module>
 vowels2[2] = 'I'
TypeError: 'tuple' object does not support item assignment
>>> vowels2
(' a', 'e', 'i', 'o', 'u')

No change here, as tuples are immutable

The interpreter
complains loudly if you try to change a tuple.

Tuples are immutable, so we can’t complain when the interpreter protests
at our trying to change the objects stored in the tuple. After all, that’s the
whole point of a tuple: once created and populated with data, a tuple cannot
change.

Make no mistake: this behavior is useful, especially when you need to ensure
that some data can’t change. The only way to ensure this is to put the data in
a tuple, which then instructs the interpreter to stop any code from trying to
change the tuple’s data.

As we work our way through the rest of this book, we’ll always use tuples
when it makes sense to do so. With reference to the vowel-processing code, it
should now be clear that the vowels data structure should always be stored
in a tuple as opposed to a list, as it makes no sense to use a mutable data
structure in this instance (as the five vowels never need to change).

There’s not much else to tuples—think of them as immutable lists, nothing
more. However, there is one usage that trips up many a programmer, so let’s
learn what this is so that you can avoid it.

If the data in
your structure
never changes,
put it in a tuple.

134   Chapter 3

a tuple caveat

Watch Out for Single-Object Tuples
Let’s imagine you want to store a single string in a tuple. It’s tempting to put
the string inside parentheses, and then assign it to a variable name...but doing
so does not produce the expected outcome.

Take a look at this interaction with the >>> prompt, which demonstrates
what happens when you do this:

object

object

object

Tuple

0

1

2

>>> t = ('Python')
>>> type(t)
<class 'str'>
>>> t
'Python'

What looks like a single-object tuple isn’t; it’s a string. This has happened
due to a syntactical quirk in the Python language. The rule is that, in order
for a tuple to be a tuple, every tuple needs to include at least one comma
between the parentheses, even when the tuple contains a single object. This
rule means that in order to assign a single object to a tuple (we’re assigning a
string object in this instance), we need to include the trailing comma, like so:

This is not what we
expected. We’ve ended up with a string. What happened to our tuple?

>>> t2 = ('Python',)

>>> type(t2)
<class 'tuple'>
>>> t2
('Python',)

This looks a little weird, but don’t let that worry you. Just remember this
rule and you’ll be fine: every tuple needs to include at least one comma between the
parentheses. When you now ask the interpreter to tell you what type t2 is
(as well as display its value), you learn that t2 is a tuple, which is what is
expected:

That trailing comma makes
all the difference, as it
tells the interpreter that
this is a tuple.

That’s better: we now have a tuple.

The interpreter displays
the single-object tuple
with the trailing comma.

It is quite common for functions to both accept and return their arguments
as a tuple, even when they accept or return a single object. Consequently,
you’ll come across this syntax often when working with functions. We’ll have
more to say about the relationship between functions and tuples in a little bit;
in fact, we’ll devote the next chapter to functions (so you won’t have long to
wait).

Now that you know about the four data structure built-ins, and before we get
to the chapter on functions, let’s take a little detour and squeeze in a short—
and fun!—example of a more complex data structure.

you are here 4   135

structured data

Combining the Built-in Data Structures

All this talk of data structures
has me wondering if things can get
more complex. Specifically, can I
store a dictionary in a dictionary?

This question gets asked a lot.
Once programmers become used to storing numbers,
strings, and booleans in lists and dictionaries, they very
quickly graduate to wondering whether the built-ins
support storing more complex data. That is, can the
built-in data structures themselves store built-in data
structures?

The answer is yes, and the reason this is so is due to
the fact that everything is an object in Python.

Everything we’ve stored so far in each of the built-ins
has been an object. The fact they’ve been “simple
objects” (like numbers and strings) does not matter, as
the built-ins can store any object. All of the built-ins
(despite being “complex”) are objects, too, so you can
mix-and-match in whatever way you choose. Simply
assign the built-in data structure as you would a simple
object, and you’re golden.

Let’s look at an example that uses a dictionary of
dictionaries.

Q: Does what you’re about to do only work with dictionaries? Can I have a list of lists, or a set of lists, or a tuple of dictionaries?

A: Yes, you can. We’ll demonstrate how a dictionary of dictionaries works, but you can combine the built-ins in whichever way you choose.

136   Chapter 3

a mutable table

Storing a Table of Data
As everything is an object, any of the built-in data structures can be stored in any
other built-in data structure, enabling the construction of arbitrarily complex data
structures...subject to your brain’s ability to actually visualize what’s going on. For
instance, although a dictionary of lists containing tuples that contain sets of dictionaries
might sound like a good idea, it may not be, as its complexity is off the scale.

A complex structure that comes up a lot is a dictionary of dictionaries. This
structure can be used to create a mutable table. To illustrate, imagine we have this
table describing a motley collection of characters:

Name			 Gender		 Occupation	 Home Planet

Ford Prefect		 Male		 Researcher		 Betelgeuse Seven
Arthur Dent		 Male		 Sandwich-Maker		 Earth
Tricia McMillan		 Female		 Mathematician		 Earth
Marvin			 Unknown		 Paranoid Android		 Unknown

Recall how, at the start of this chapter, we created a dictionary called
person3 to store Ford Prefect’s data:

person3 = { 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }

Rather than create (and then grapple with) four individual dictionary
variables for each line of data in our table, let’s create a single dictionary
variable, called people. We’ll then use people to store any number of
other dictionaries.

To get going, we first create an empty people dictionary, then assign Ford
Prefect’s data to a key:

>>> people = {}
>>> people['Ford'] = { 'Name': 'Ford Prefect',
 		 'Gender': 'Male',
 		 'Occupation': 'Researcher',
 		 'Home Planet': 'Betelgeuse Seven' }

Start with a new, empty dictionary.

The key is “Ford”,
and the value is
another dictionary.

you are here 4   137

structured data

A Dict ionary Containing a Dict ionary
With the people dictionary created and one row of data added (Ford’s), we can
ask the interpreter to display the people dictionary at the >>> prompt. The
resulting output looks a little confusing, but all of our data is there:

>>> people
{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'}}

A dictionary embedded in a dictionary—note the extra curly braces.

There is only one embedded dictionary in people (at the moment), so calling
this a “dictionary of dictionaries” is a bit of a stretch, as people contains just
the one right now. Here’s what people looks like to the interpreter:

Fordpeople

Occupation Researcher
Gender Male

Home Planet Betelgeuse Seven
Name Ford PrefectThe “people”

dictionary....

...contains another dictionary (which is the value associated with the “Ford” key).

We can now proceed to add in the data from the other three rows in our table:

>>> people['Arthur'] = { 'Name': 'Arthur Dent',
 		 'Gender': 'Male',
 		 'Occupation': 'Sandwich-Maker',
 		 'Home Planet': 'Earth' }
>>> people['Trillian'] = { 'Name': 'Tricia McMillan',
 		 'Gender': 'Female',
 		 'Occupation': 'Mathematician',
 		 'Home Planet': 'Earth' }
>>> people['Robot'] = { 'Name': 'Marvin',
 		 'Gender': 'Unknown',
 		 'Occupation': 'Paranoid Android',
 		 'Home Planet': 'Unknown' }

Arthur’s data

Tricia’s data is associated with the
“Trillian” key.

Marvin’s data is associated with
the “Robot” key.

138   Chapter 3

it’s just data

A Dict ionary of Dict ionaries (a.k .a. a Table)
With the people dictionary populated with four embedded dictionaries, we can
ask the interpreter to display the people dictionary at the >>> prompt.

Doing so results in an unholy mess of data on screen (see below).

Despite the mess, all of our data is there. Note that each opening curly brace starts
a new dictionary, while a closing curly brace terminates a dictionary. Go ahead and
count them (there are five of each):

>>> people
{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'},
'Trillian': {'Occupation': 'Mathematician', 'Gender':
'Female', 'Home Planet': 'Earth', 'Name': 'Tricia
McMillan'}, 'Robot': {'Occupation': 'Paranoid Android',
'Gender': 'Unknown', 'Home Planet': 'Unknown', 'Name':
'Marvin'}, 'Arthur': {'Occupation': 'Sandwich-Maker',
'Gender': 'Male', 'Home Planet': 'Earth', 'Name': 'Arthur
Dent'}}

It’s a little hard to read, but all the data is there.

The interpreter just
dumps the data to the screen.
Any chance we can make this
more presentable?

Yes, we can make this easier to read.
We could pop over to the >>> prompt and code
up a quick for loop that could iterate over each
of the keys in the people dictionary. As we did
this, a nested for loop could process each of
the embedded dictionaries, being sure to output
something easier to read on screen.

We could...but we aren’t going to, as someone else
has already done this work for us.

you are here 4   139

structured data

Pretty-Print ing Complex Data Structures
The standard library includes a module called pprint that can take any data
structure and display it in an easier-to-read format. The name pprint is a
shorthand for “pretty print.”

Let’s use the pprint module with our people dictionary (of dictionaries).
Below, we once more display the data “in the raw” at the >>> prompt, and then
we import the pprint module before invoking its pprint function to produce
the output we need:

>>> people
{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'},
'Trillian': {'Occupation': 'Mathematician', 'Gender':
'Female', 'Home Planet': 'Earth', 'Name': 'Tricia
McMillan'}, 'Robot': {'Occupation': 'Paranoid Android',
'Gender': 'Unknown', 'Home Planet': 'Unknown', 'Name':
'Marvin'}, 'Arthur': {'Occupation': 'Sandwich-Maker',
'Gender': 'Male', 'Home Planet': 'Earth', 'Name': 'Arthur
Dent'}}
>>>
>>> import pprint
>>>
>>> pprint.pprint(people)
{'Arthur': {'Gender': 'Male',
 'Home Planet': 'Earth',
 'Name': 'Arthur Dent',
 'Occupation': 'Sandwich-Maker'},
 'Ford': {'Gender': 'Male',
 'Home Planet': 'Betelgeuse Seven',
 'Name': 'Ford Prefect',
 'Occupation': 'Researcher'},
 'Robot': {'Gender': 'Unknown',
 'Home Planet': 'Unknown',
 'Name': 'Marvin',
 'Occupation': 'Paranoid Android'},
 'Trillian': {'Gender': 'Female',
 'Home Planet': 'Earth',
 'Name': 'Tricia McMillan',
 'Occupation': 'Mathematician'}}

Our dictionary of dictionaries is hard to read.

Import the “pprint” module, then invoke
the “pprint” function to do the work.

This output
is much easier
on the eye.
Note that we
still have five
opening and five closing curly
braces. It’s just that—thanks to “pprint”—they
are now so much easier to see
(and count).

140   Chapter 3

how it looks

people

Occupation Sandwich-Maker
Gender Male

Home Planet Earth
Name Arthur Dent

Arthur

The “people”
dictionary

Occupation Researcher
Gender Male

Home Planet Betelgeuse Seven
Name Ford Prefect

Ford

Occupation Paranoid Android
Gender Unknown

Home Planet Unknown
Name Marvin

Robot

Occupation Mathematician
Gender Female

Home Planet Earth
Name Tricia McMillan

Trillian

Visualizing Complex Data Structures
Let’s update our diagram depicting what the interpreter now “sees” when the
people dictionary of dictionaries is populated with data:

Four
embedded
dictionaries

At this point, a reasonable question to ask is: Now that we have all this data stored in a
dictionary of dictionaries, how do we get at it? Let’s answer this question on the next page.

you are here 4   141

structured data

Accessing a Complex Data Structure’s Data
We now have our table of data stored in the people dictionary. Let’s remind
ourselves of what the original table of data looked like:

Name			 Gender		 Occupation	 Home Planet

Ford Prefect		 Male		 Researcher		 Betelgeuse Seven
Arthur Dent		 Male		 Sandwich-Maker		 Earth
Tricia McMillan		 Female		 Mathematician		 Earth
Marvin			 Unknown		 Paranoid Android		 Unknown

If we were asked to work out what Arthur does, we’d start by looking down the
Name column for Arthur’s name, and then we’d look across the row of data until
we arrived at the Occupation column, where we’d be able to read “Sandwich-
Maker.”

When it comes to accessing data in a complex data structure (such as our people
dictionary of dictionaries), we can follow a similar process, which we’re now going
to demonstrate at the >>> prompt.

We start by finding Arthur’s data in the people dictionary, which we can do by
putting Arthur’s key between square brackets:

>>> people['Arthur']
{'Occupation': 'Sandwich-Maker', 'Home Planet': 'Earth',
'Gender': 'Male', 'Name': 'Arthur Dent'}

Ask for
Arthur’s
row of
data. The row of dictionary data associated with the “Arthur” keyHaving found Arthur’s row of data, we can now ask for the value associated with

the Occupation key. To do this, we employ a second pair of square brackets to
index into Arthur’s dictionary and access the data we’re looking for:

>>> people['Arthur']['Occupation']
'Sandwich-Maker'

Identify the row. Identify the column.

Using double square brackets lets you access any data value from a table by
identifying the row and column you are interested in. The row corresponds to a
key used by the enclosing dictionary (people, in our example), while the column
corresponds to any of the keys used by an embedded dictionary.

142   Chapter 3

complex wrap-up

Data Is As Complex As You Make It
Whether you have a small amount of data (a simple list) or something more
complex (a dictionary of dictionaries), it’s nice to know that Python’s four
built-in data structures can accommodate your data needs. What’s especially
nice is the dynamic nature of the data structures you build; other than tuples,
each of the data structures can grow and shrink as needed, with Python’s
interpreter taking care of any memory allocation/deallocation details for you.

We are not done with data yet, and we’ll come back to this topic again later in
this book. For now, though, you know enough to be getting on with things.

In the next chapter, we start to talk about techniques to effectively reuse code
with Python, by learning about the most basic of the code reuse technologies:
functions.

you are here 4   143

structured data

Chapter 3’s Code, 1 of 2

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")

found = {}

found['a'] = 0
found['e'] = 0
found['i'] = 0
found['o'] = 0
found['u'] = 0

for letter in word:
 if letter in vowels:
 found[letter] += 1

for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

This is the code for “vowels4.py”, which performed a frequency count. This code was (loosely) based on “vowels3.py”, which we first saw in Chapter 2.

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")

found = {}

for letter in word:
 if letter in vowels:
 found[letter] += 1

for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

In an attempt to
remove the dictionary
initialization code, we
created “vowels5.py”,
which crashed with a
runtime error (due to
us failing to initialize
the frequency counts).

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")

found = {}

for letter in word:
 if letter in vowels:
 found.setdefault(letter, 0)
 found[letter] += 1

for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

“vowels6.py” fixed the
runtime error thanks to
the use of the “setdefault”
method, which comes with
every dictionary (and assigns
a default value to a key if a
value isn’t already set).

144   Chapter 3

the code

Chapter 3’s Code, 2 of 2

vowels = set('aeiou')
word = input("Provide a word to search for vowels: ")
found = vowels.intersection(set(word))
for vowel in found:
 print(vowel)

The final version of the vowels program, “vowels7.py", took advantage of Python’s set data structure to considerably shrink the list-based “vowels3.py” code, while still providing the same functionality.

Was there no sample
program that took
advantage of tuples?

No, there wasn’t. But that’s OK.
We didn’t exploit tuples in this chapter with an
example program, as tuples don’t come into their
own until discussed in relation to functions. As we
have already stated, we’ll see tuples again when
we meet functions (in the next chapter), as well
as elsewhere in this book. Each time we see them,
we’ll be sure to point out each tuple usage. As
you continue with your Python travels, you’ll see
tuples pop up all over the place.

this is a new chapter   145

code reuse4

Functions and Modules

Reusing code is key to building a maintainable system.�
And when it comes to reusing code in Python, it all starts and ends with the humble

function. Take some lines of code, give them a name, and you’ve got a function (which

can be reused). Take a collection of functions and package them as a file, and you’ve

got a module (which can also be reused). It’s true what they say: it’s good to share, and

by the end of this chapter, you’ll be well on your way to sharing and reusing your code,

thanks to an understanding of how Python’s functions and modules work.

No matter how much code I
write, things just become totally
unmanageable after a while...

146   Chapter 4

starting with functions

Reusing Code with Funct ions
Although a few lines of code can accomplish a lot in Python, sooner or later
you’re going to find your program’s codebase is growing...and, when it does,
things quickly become harder to manage. What started out as 20 lines of
Python code has somehow ballooned to 500 lines or more! When this happens,
it’s time to start thinking about what strategies you can use to reduce the
complexity of your codebase.

Like many other programming languages, Python supports modularity, in
that you can break large chunks of code into smaller, more manageable pieces.
You do this by creating functions, which you can think of as named chunks
of code. Recall this diagram from Chapter 1, which shows the relationship
between functions, modules, and the standard library:

getcwd

getcwd chmod
mkdir

getcwd chmod
mkdir

os

getcwd chmod
mkdir

getcwd chmod
mkdir

enum
getcwd chmod

mkdir

random

getcwd chmod
mkdir

json

getcwd chmod
mkdir

getcwd chmod
mkdir

datetime

getcwd chmod
mkdir

getcwd chmod
mkdir

timegetcwd chmod
mkdir

sys

getcwd chmod
mkdir

os

The function...

...is part of a
module...

...which comes as part of
the standard library.

In this chapter, we’re going to concentrate on what’s involved in creating your
own functions, shown at the very top of the diagram. Once you’re happily
creating functions, we’ll also show you how to create a module.

In this chapter, we are concentrating on creating and using functions (but we’re repeating the entire diagram from Chapter 1 in this instance to remind you how functions fit into the larger scheme of things). We will create our own module, too, but are leaving the creation of libraries to other books.

you are here 4   147

code reuse

Introducing Funct ions
Before we get to turning some of our existing code into a function, let’s spend a
moment looking at the anatomy of any function in Python. Once this introduction is
complete, we’ll look at some of our existing code and go through the steps required to
turn it into a function that you can reuse.

Don’t sweat the details just yet. All you need to do here is get a feel for what functions
look like in Python, as described on this and the next page. We’ll delve into the details
of all you need to know as this chapter progresses. The IDLE window on this page
presents a template you can use when creating any function. As you are looking at it,
consider the following:

Functions introduce two new keywords: def and return
Both of these keywords are colored orange in IDLE. The def keyword names the function
(shown in blue), and details any arguments the function may have. The use of the return
keyword is optional, and is used to pass back a value to the code that invoked the function.

1

Functions can accept argument data
A function can accept argument data (i.e., input to the function). You can specify a list of
arguments between the parentheses on the def line, following the function’s name.

2

Functions contain code and (usually) documentation
Code is indented one level beneath the def line, and should include comments where it
makes sense. We demonstrate two ways to add comments to code: using a triple-quoted
string (shown in green in the template and known as a docstring), and using a single-line
comment, which is prefixed by the # symbol (and shown in red, below).

3

Geek Bits
Python uses the name “function” to describe a reusable chunk of code. Other programming languages
use names such as “procedure,” “subroutine,” and “method.” When a function is part of a Python class,
it‘s known as a “method.”. You’ll learn all about Python’s classes and methods in a later chapter.

A handy
function
template

The “def” line names
the function and lists
any arguments.

Your code goes
here (in place
of these single-
line comment
placeholders).

The “docstring”
describes the
function’s purpose.

148   Chapter 4

what about type?

What About Type Information?
Take another look at our function template. Other than some code to execute,
do you think there’s anything missing? Is there anything you’d expect to be
specified, but isn’t? Take another look:

I’m a little freaked out by
that function template. How does
the interpreter know what types the
arguments are, as well as what type the

return value is?

It doesn’t know, but don’t let that worry you.
The Python interpreter does not force you to specify the
type of your function’s arguments or the return value.
Depending on the programming languages you’ve used
before, this may well freak you out. Don’t let it.

Python lets you send any object as a argument, and pass
back any object as a return value. The interpreter doesn’t
care or check what type these objects are (only that they are
provided).

With Python 3, it is possible to indicate the expected types for
arguments/return values, and we’ll do just that later in this
chapter. However, indicating the types expected does not

“magically” switch on type checking, as Python never checks
the types of the arguments or any return values.

Is there
anything
missing from
this function
template?

you are here 4   149

code reuse

Naming a Chunk of Code with “def”
Once you’ve identified a chunk of your Python code you want to reuse, it’s
time to create a function. You create a function using the def keyword
(which is short for define). The def keyword is followed by the function’s
name, an optionally empty list of arguments (enclosed in parentheses), a
colon, and then one or more lines of indented code.

Recall the vowels7.py program from the end of the last chapter, which,
given a word, prints the vowels contained in that word:

vowels = set('aeiou')
word = input("Provide a word to search for vowels: ")
found = vowels.intersection(set(word))
for vowel in found:
 print(vowel)

Let’s imagine you plan to use these five lines of code many times in a much
larger program. The last thing you’ll want to do is copy and paste this code
everywhere it’s needed...so, to keep things manageable and to ensure you
only need to maintain one copy of this code, let’s create a function.

We’ll demonstrate how at the Python Shell (for now). To turn the above five
lines of code into a function, use the def keyword to indicate that a function
is starting; give the function a descriptive name (always a good idea); provide
an optionally empty list of arguments in parentheses, followed by a colon;
and then indent the lines of code relative to the def keyword, as follows:

>>> def search4vowels():
		 vowels = set('aeiou')
		 word = input("Provide a word to search for vowels: ")
		 found = vowels.intersection(set(word))
		 for vowel in found:
			 print(vowel)

Start with the
“def” keyword.

Give your function a nice,
descriptive name.

Don’t forget
the colon.

Provide an optional list of arguments—in this case, this function has no arguments, so the list is empty.

The fives lines
of code from
the “vowels7.py”
program, suitably
indented As this is the shell, remember to press the Enter key

TWICE to confirm that the indented code has concluded.

This is “vowels7.py” from the end of Chapter 3.

Now that the function exists, let’s invoke it to see if it is working the way we
expect it to.

Display any
results.

Take a set of
vowels...

...and a word...
...then perform
an intersection.

Take the time
to choose a good
descriptive name
for your function.

150   Chapter 4

calling functions

Invoking Your Funct ion
To invoke functions in Python, provide the function name together with
values for any arguments the function expects. As the search4vowels
function (currently) takes no arguments, we can invoke it with an empty
argument list, like so:

>>> search4vowels()
Provide a word to search for vowels: hitch-hiker
e
i

Invoking the function again runs it again:

>>> search4vowels()
Provide a word to search for vowels: galaxy
a

There are no surprises here: invoking the function executes its code.

Edit your funct ion in an editor, not at the prompt
At the moment, the code for the search4vowels function has been
entered into the >>> prompt, and it looks like this:

>>> def search4vowels():
		 vowels = set('aeiou')
		 word = input("Provide a word to search for vowels: ")
		 found = vowels.intersection(set(word))
		 for vowel in found:
			 print(vowel)

In order to work further with this code, you can recall it at the >>> prompt
and edit it, but this becomes very unwieldy, very quickly. Recall that once the
code you’re working with at the >>> prompt is more than a few lines long,
you’re better off copying the code into an IDLE edit window. You can edit it
much more easily there. So, let’s do that before continuing.

Create a new, empty IDLE edit window, then copy the function’s code from
the >>> prompt (being sure not to copy the >>> characters), and paste it into
the edit window. Once you’re satisfied that the formatting and indentation are
correct, save your file as vsearch.py before continuing.

Our function
as entered
at the shell
prompt.

Be sure you’ve
saved your code
as “vsearch.py”
after copying the
function’s code
from the shell.

you are here 4   151

code reuse

The function’s code is now in an IDLE edit window, and has been saved as “vsearch.py”.

If you press F5 while in the edit window, two things happen: the IDLE shell
is brought to the foreground, and the shell restarts. However, nothing appears
on screen. Try this now to see what we mean: press F5.

The reason for nothing displaying is that you have yet to invoke the function.
We’ll invoke it in a little bit, but for now let’s make one change to our function
before moving on. It’s a small change, but an important one nonetheless.

Let’s add some documentation to the top of our function.

To add a multiline comment (a docstring) to any code, enclose your
comment text in triple quotes.

Here’s the vsearch.py file once more, with a docstring added to the top of
the function. Go ahead and make this change to your code, too:

If IDLE displays an error
when you press F5, don’t
panic! Return to your edit
window and check that your
code is the exact same as
ours, then try again.

Use IDLE’s Editor to Make Changes
Here’s what the vsearch.py file looks like in IDLE:

A docstring has been
added to the function’s
code, which (briefly)
describes the purpose
of this function.

152   Chapter 4

whither PEP compliance?

What’s the Deal with All Those Strings?
Take another look at the function as it currently stands. Pay particular attention to
the three strings in this code, which are all colored green by IDLE:

IDLE’s syntax-highlighting shows that we have
a consistency problem with our use of string
quotes. When do we use which style?Understanding the str ing quote characters

In Python, strings can be enclosed in a single quote character ('), a double quote
character ("), or what’s known as triple quotes (""" or ''').

As mentioned earlier, triple quotes around strings are known as docstrings,
because they are mainly used to document a function’s purpose (as shown above).
Even though you can use """ or ''' to surround your docstrings, most Python
programmers prefer to use """. Docstrings have an interesting characteristic in
that they can span multiple lines (other programming languages use the name

“heredoc” for the same concept).

Strings enclosed by a single quote character (') or a double quote character (")
cannot span multiple lines: you must terminate the string with a matching quote
character on the same line (as Python uses the end of the line as a statement
terminator).

Which character you use to enclose your strings is up to you, although using the
single quote character is very popular with the majority of Python programmers.
That said, and above all else, your usage should be consistent.

The code shown at the top of this page (despite being only a handful of lines of
code) is not consistent in its use of string quote characters. Note that the code runs
fine (as the interpreter doesn’t care which style you use), but mixing and matching
styles can make the code harder to read than it needs to be (which is a shame).

Be consistent in
your use of string
quote characters.
If possible, use
single quotes.

you are here 4   153

code reuse

Follow Best Pract ice As Per the PEPs
When it comes to formatting your code (not just strings), the Python programming
community has spent a long time establishing and documenting best practice. This
best practice is known as PEP 8. PEP is shorthand for “Python Enhancement
Protocol.”

There are a large number of PEP documents in existence, and they primarily detail
proposed and implemented enhancements to the Python programming language,
but can also document advice (on what to do and what not to do), as well as describe
various Python processes. The details of the PEP documents can be very technical and
(often) esoteric. Thus, the vast majority of Python programmers are aware of their
existence but rarely interact with PEPs in detail. This is true of most PEPs except for
PEP 8.

PEP 8 is the style guide for Python code. It is recommended reading for all Python
programmers, and it is the document that suggests the “be consistent” advice for string
quotes described on the last page. Take the time to read PEP 8 at least once. Another
document, PEP 257, offers conventions on how to format docstrings, and it’s worth
reading, too.

Here is the search4vowels function once more in its PEP 8– and PEP 257–
compliant form. The changes aren’t extensive, but standardizing on single quote
characters around our strings (but not around our docstrings) does look a bit better:

Find the list
of PEPs here:
https://www.
python.org/
dev/peps/.

This is a PEP
257-compliant docstring.

We’ve heeded PEP
8’s advice on being
consistent with the single
quote character we use
to surround our strings.

Of course, you don’t have to write code that conforms exactly to PEP 8. For example,
our function name, search4vowels, does not conform to the guidelines, which
suggests that words in a function’s name should be separated by an underscore:
a more compliant name is search_for_vowels. Note that PEP 8 is a set of
guidelines, not rules. You don’t have to comply, only consider, and we like the name
search4vowels.

That said, the vast majority of Python programmers will thank you for writing code
that conforms to PEP 8, as it is often easier to read than code that doesn’t.

Let’s now return to enhancing the search4vowels function to accept arguments.

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/

154   Chapter 4

add an argument

Funct ions Can Accept Arguments
Rather than having the function prompt the user for a word to search, let’s change
the search4vowels function so we can pass it the word as input to an argument.

Adding an argument is straightforward: you simply insert the argument’s name
between the parentheses on the def line. This argument name then becomes a
variable in the function’s suite. This is an easy edit.

Let’s also remove the line of code that prompts the user to supply a word to search,
which is another easy edit.

Let’s remind ourselves of the current state of our code:

Applying the two suggested edits (from above) to our function results in the IDLE
edit window looking like this (note: we’ve updated our docstring, too, which is always
a good idea):

Remember:
“suite” is
Python-speak
for “block.”

Be sure to save your file after each code change, before pressing F5 to take the new
version of your function for a spin.

Here’s our
original
function.

Put the
argument’s
name
between the
parentheses.

The call to the
“input” function is gone (as we don’t need that line of code anymore).

This line isn’t
needed anymore.

you are here 4   155

code reuse

Test Drive
With your code loaded into IDLE’s edit window (and saved), press F5, then invoke the function a few
times and see what happens:

The current
“search4vowels”
code

Although we’ve invoked the “search4vowels” function three times in this Test Drive, the only invocation that ran successfully was the one that passed in a single, stringed argument. The other two failed. Take a moment to read the error messages produced by the interpreter to learn why each of the incorrect calls failed.

Q: Am I restricted to only a single argument when creating functions in Python?

A: No, you can have as many arguments as you want, depending on the service your function is providing. We are deliberately starting
off with a straightforward example, and we’ll get to more involved examples as this chapter progresses. You can do a lot with arguments to
functions in Python, and we plan to discuss most of what’s possible over the next dozen pages or so.

156   Chapter 4

return a value

Funct ions Return a Result
As well as using a function to abstract some code and give it a name,
programmers typically want functions to return some calculated value, which
the code that called the function can then work with. To support returning a
value (or values) from a function, Python provides the return statement.

When the interpreter encounters a return statement in your function’s suite,
two things happen: the function terminates at the return statement, and
any value provided to the return statement is passed back to your calling
code. This behavior mimics how return works in the majority of other
programming languages.

Let’s start with a straightforward example of returning a single value from
our search4vowels function. Specifically, let’s return either True or
False depending on whether the word supplied as an argument contains
any vowels.

This is a bit of a departure from our function’s existing functionality, but bear
with us, as we are going to build up to something more complex (and useful)
in a bit. Starting with a simple example ensures we have the basics in place
first, before moving on.

That sounds like a plan I can
live with. The only question
I have is how do I know
whether something is true or

false?

The truth is...
Python comes with a built-in function called bool
that, when provided with any value, tells you whether
the value evaluates to True or False.

Not only does bool work with any value, it works
with any Python object. The effect of this is that
Python’s notion of truth extends far beyond the 1 for
True and the 0 for False that other programming
languages employ.

Let’s pause and take a brief look at True and False
before getting back to our discussion of return.

you are here 4   157

code reuse

Every object in Python has a truth value associated with it, in that the object
evaluates to either True or False.

Something is False if it evaluates to 0, the value None, an empty string,
or an empty built-in data structure. This means all of these examples are
False:

>>> bool(0)
False
>>> bool(0.0)
False
>>> bool('')
False
>>> bool([])
False
>>> bool({})
False
>>> bool(None)
False

Every other object in Python evaluates to True. Here are some examples of
objects that are True:

If an object evaluates to 0, it is always False.

An empty string, an empty list, and
an empty dictionary all evaluate to
False.

Python’s “None” value is
always False.

>>> bool(1)
True
>>> bool(-1)
True
>>> bool(42)
True
>>> bool(0.0000000000000000000000000000001)
True
>>> bool('Panic')
True
>>> bool([42, 43, 44])
True
>>> bool({'a': 42, 'b':42})
True

A number that isn’t 0 is always True, even when it’s negative.
It may be
really small,
but it is
still not 0,
so it’s True.A nonempty string is

always True.
A nonempty built-in data
structure is True.

We can pass any object to the bool function and determine whether it is
True or False.

Critically, any nonempty data structure evaluates to True.

Truth Up Close

158   Chapter 4

handling the truth

Returning One Value
Take another look at our function’s code, which currently accepts any value
as an argument, searches the supplied value for vowels, and then displays the
found vowels on screen:

def search4vowels(word):
 """Display any vowels found in a supplied word."""
 vowels = set('aeiou')
 found = vowels.intersection(set(word))
 for vowel in found:
 print(vowel)

Changing this function to return either True or False, based on whether
any vowels were found, is straightforward. Simply replace the last two lines of
code (the for loop) with this line of code:

We’ll change these two lines.

return bool(found)

Call the “bool”
function, and...

...pass in the name of the data structure that contains the results of the vowels search.
If nothing is found, the function returns False; otherwise, it returns True.
With this change made, you can now test this new version of your function at
the Python Shell and see what happens:

>>> search4vowels('hitch-hiker')
True
>>> search4vowels('galaxy')
True
>>> search4vowels('sky')
False

If you continue to see the previous version’s behavior, ensure you’ve saved the
new version of your function, as well as pressed F5 from the edit window.

The “return”
statement (thanks
to “bool”) gives us
either “True” or
“False”.

Geek Bits
Don’t be tempted to put parentheses around the object that return passes back to the calling
code. You don’t need to. The return statement is not a function call, so the use of parentheses isn’t a
syntactical requirement. You can use them (if you really want to), but most Python programmers don’t.

As in earlier
chapters, we are not classing ‘y’ as a vowel.

you are here 4   159

code reuse

Returning More Than One Value
Functions are designed to return a single value, but it is sometimes necessary
to return more than one value. The only way to do this is to package the
multiple values in a single data structure, then return that. Thus, you’re still
returning one thing, even though it potentially contains many individual
pieces of data.

Here’s our current function, which returns a boolean value (i.e., one thing):

def search4vowels(word):
 """Return a boolean based on any vowels found."""
 vowels = set('aeiou')
 found = vowels.intersection(set(word))
 return bool(found)

def search4vowels(word):
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 found = vowels.intersection(set(word))
 return found We’ve updated

the comment
again.

Return the results as a
data structure (a set).

It’s a trivial edit to have the function return multiple values (in one set) as
opposed to a boolean. All we need to do is drop the call to bool:

We can further reduce the last two lines of code in the above version of our
function to one line by removing the unnecessary use of the found variable.
Rather than assigning the results of the intersection to the found
variable and returning that, just return the intersection:

def search4vowels(word):
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 return vowels.intersection(set(word))

Return the data without the use
of the unnecessary “found” variable.

Our function now returns a set of vowels found in a word, which is exactly
what we set out to do.

However, when we tested it, one of our results has us scratching our head...

Note: we’ve
updated the comment.

160   Chapter 4

set weirdness

Test Drive
Let’s take this latest version of the search4vowels function for a spin and see how it behaves.
With the latest code loaded into an IDLE edit window, press F5 to import the function into the Python
Shell, and then invoke the function a few times:

Each of these function invocations works as expected, even though the result from the last one looks a little weird.

What’s the deal with “set()”?
Each example in the above Test Drive works fine, in that the function takes a
single string value as an argument, then returns the set of vowels found. The
one result, the set, contains many values. However, the last response looks a
little weird, doesn’t it? Let’s have a closer look:

>>> search4vowels('sky')
set()

We don’t need a
function to tell us that
the word “sky” doesn’t
contain any vowels... ...but look what our function returns. What gives?

You may have expected the function to return {} to represent an empty set,
but that’s a common misunderstanding, as {} represents an empty dictionary,
not an empty set.

An empty set is represented as set() by the interpreter.

This may well look a little weird, but it’s just the way things work in Python.
Let’s take a moment to recall the four built-in data structures, with a eye to
seeing how each empty data structure is represented by the interpreter.

you are here 4   161

code reuse

Recalling the Built-in Data Structures
Let’s remind ourselves of the four built-in data structures available to us. We’ll take
each data structure in turn, working through list, dictionary, set, and finally tuple.

Working at the shell, let’s create an empty data structure using the data structure built-
in functions (BIFs for short), then assign a small amount of data to each. We’ll then
display the contents of each data structure after each assignment:

BIF is short-
hand for “built-
in function.”>>> l = list()

>>> l
[]
>>> l = [1, 2, 3]
>>> l
[1, 2, 3]

>>> d = dict()
>>> d
{}
>>> d = { 'first': 1, 'second': 2, 'third': 3 }
>>> d
{'second': 2, 'third': 3, 'first': 1}

>>> s = set()
>>> s
set()
>>> s = {1, 2, 3}
>>> s
{1, 2, 3}

>>> t = tuple()
>>> t
()
>>> t = (1, 2, 3)
>>> t
(1, 2, 3)

Use the “list” BIF to
define an empty list,
then assign some data.

Use the “dict” BIF to
define an empty dictionary,
then assign some data.

Use the “set” BIF to define an empty set, then assign some data.

Use the “tuple” BIF to
define an empty tuple,
then assign some data.

An
empty
list

An empty
dictionary

An empty
set

An empty
tuple

Before moving on, take a moment to review
how the interpreter represents each of the
empty data structures as shown on this page.

Even though sets are enclosed
in curly braces, so too are
dictionaries. An empty
dictionary is already using
the double curly braces, so
an empty set has to be
represented as “set()”.

162   Chapter 4

annotate your functions

Use Annotat ions to Improve Your Docs
Our review of the four data structures confirms that the search4vowels function
returns a set. But, other than calling the function and checking the return type, how
can users of our function know this ahead of time? How do they know what to expect?

A solution is to add this information to the docstring. This assumes that you very
clearly indicate in your docstring what the arguments and return value are going
to be and that this information is easy to find. Getting programmers to agree on a
standard for documenting functions is problematic (PEP 257 only suggests the format
of docstrings), so Python 3 now supports a notation called annotations (also known
as type hints). When used, annotations document—in a standard way—the return type,
as well as the types of any arguments. Keep these points in mind:

def search4vowels(word:str) -> set:
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 return vowels.intersection(set(word))

We are stating that the
“word” argument is expected
to be a string.

We are stating that the
function returns a set to its caller.

Annotation syntax is straightforward. Each function argument has a colon appended
to it, together with the type that is expected. In our example, :str specifies that the
function expects a string. The return type is provided after the argument list, and is
indicated by an arrow symbol, which is itself followed by the return type, then the
colon. Here -> set: indicates that the function is going to return a set.

So far, so good.

We’ve now annotated our function in a standard way. Because of this, programmers
using our function now know what’s expected of them, as well as what to expect from
the function. However, the interpreter won’t check that the function is always called
with a string, nor will it check that the function always returns a set. Which begs a
rather obvious question...

For more details
on annotations,
see PEP 3107
at https://www.
python.org/dev/
peps/pep-3107/.

Let’s annotate the search4vowels function’s arguments. The first annotation states
that the function expects a string as the type of the word argument (:str), while the
second annotation states that the function returns a set to its caller (-> set):

Function annotations are optional
It’s OK not to use them. In fact, a lot of existing Python code doesn’t (as they were only
made available to programmers in the most recent versions of Python 3).

1

Function annotations are informational
They provide details about your function, but they do not imply any other behavior (such as
type checking).

2

https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/

you are here 4   163

code reuse

Why Use Funct ion Annotat ions?
If the Python interpreter isn’t going to use your annotations to check the types of
your function’s arguments and its return type, why bother with annotations at all?

The goal of annotations is not to make life easier for the interpreter; it’s to make
life easier for the user of your function. Annotations are a documentation
standard, not a type enforcement mechanism.

In fact, the interpreter does not care what type your arguments are, nor does it
care what type of data your function returns. The interpreter calls your function
with whatever arguments are provided to it (no matter their type), executes your
function’s code, and then returns to the caller whatever value it is given by the
return statement. The type of the data being passed back and forth is not
considered by the interpreter.

What annotations do for programmers using your function is rid them of the need
to read your function’s code to learn what types are expected by, and returned
from, your function. This is what they’ll have to do if annotations aren’t used.
Even the most beautifully written docstring will still have to be read if it doesn’t
include annotations.

Which leads to another question: how do we view the annotations without reading
the function’s code? From IDLE’s editor, press F5, then use the help BIF at the
>>> prompt.

Use annotations
to help document
your functions,
and use the “help”
BIF to view them.

Test Drive
If you haven’t done so already, use IDLE’s editor to annotate your copy of search4vowels, save
your code, and then press the F5 key. The Python Shell will restart and the >>> prompt will be waiting
for you to do something. Ask the help BIF to display search4vowels documentation, like so:

Not only does “help” display the annotations, but it shows the docstring too.

164   Chapter 4

function recap

Funct ions: What We Know Already
Let’s pause for a moment and review what we know (so far) about Python functions.

�� Functions are named chunks of
code.

�� The def keyword is used to name
a function, with the function’s code
indented under (and relative to) the
def keyword.

�� Python’s triple-quoted strings can be
used to add multiline comments to a
function. When they are used in this
way, they are known as docstrings.

�� Functions can accept any number of
named arguments, including none.

�� The return statement lets your
functions return any number of
values (including none).

�� Function annotations can be used to
document the type of your function’s
arguments, as well as its return type.

Let’s take a moment to once more review the code for the search4vowels function.
Now that it accepts an argument and returns a set, it is more useful than the very first
version of the function from the start of this chapter, as we can now use it in many
more places:

def search4vowels(word:str) -> set:
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 return vowels.intersection(set(word))

This function would be even more useful if, in addition to accepting an argument for
the word to search, it also accepted a second argument detailing what to search for.
This would allow us to look for any set of letters, not just the five vowels.

Additionally, the use of the name word as an argument name is OK, but not great,
as this function clearly accepts any string as an argument, as opposed to a single word.
A better variable name might be phrase, as it more closely matches what it is we
expect to receive from the users of our function.

Let’s change our function now to reflect this last suggestion.

The most
recent
version of
our function

you are here 4   165

code reuse

Making a Generically Useful Funct ion
Here’s a version of the search4vowels function (as it appears in IDLE) after it
has been changed to reflect the second of the two suggestions from the bottom of
the last page. Namely, we’ve changed the name of the word variable to the more
appropriate phrase:

The other suggestion from the bottom of the last page was to allow users to
specify the set of letters to search for, as opposed to always using the five vowels.
To do this we can add a second argument to the function that specifies the letters
to search phrase for. This is an easy change to make. However, once we make
it, the function (as it stands) will be incorrectly named, as we’ll no longer be
searching for vowels, we’ll be searching for any set of letters. Rather than change
the current function, let’s create a second one that is based on the first. Here’s
what we propose to do:

Give the new function a more generic name
Rather than continuing to adjust search4vowels, let’s create a new function called
search4letters, which is a name that better reflects the new function’s purpose.

1

Remove the vowels variable
The use of the name vowels in the function’s suite no longer makes any sense, as we are
now looking for a user-specified set of letters.

3

Update the docstring
There’s no point copying, then changing, the code if we don’t also adjust the docstring. Our
documentation needs be updated to reflect what the new function does.

4

We are going to work through these four tasks together. As each task is discussed,
be sure to edit your vsearch.py file to reflect the presented changes.

The “word” variable is now called “phrase”.

Add a second argument
Adding a second argument allows us to specify the set of letters to search the string for. Let’s
call the second argument letters. And let’s not forget to annotate letters, too.

2

166   Chapter 4

step by step

Creat ing Another Funct ion, 1 of 3
If you haven’t done so already, open the vsearch.py file in an IDLE edit window.

Step 1 involves creating a new function, which we’ll call search4letters. Be
aware that PEP 8 suggests that all top-level functions are surrounded by two blank
lines. All of this book’s downloads conform to this guideline, but the code we show on
the printed page doesn’t (as space is at a premium here).

At the bottom of the file, type def followed by the name of your new function:

For Step 2 we’re completing the function’s def line by adding in the names of the
two required arguments, phrase and letters. Remember to enclose the list of
arguments within parentheses, and don’t forget to include the trailing colon (and the
annotations):

Start by giving your new
function a name.

Specify the list of arguments, and don’t
forget the colon (and the annotations, too

).

Did you notice how IDLE’s editor has anticipated that the next line of code needs to be indented (and automatically positioned the cursor)?

With Steps 1 and 2 complete, we’re now ready to write
the function’s code. This code is going to be similar to
that in the search4vowels function, except that we
plan to remove our reliance on the vowels variable.

you are here 4   167

code reuse

Creat ing Another Funct ion, 2 of 3
On to Step 3, which is to write the code for the function in such a way as to
remove the need for the vowels variable. We could continue to use the variable,
but give it a new name (as vowels no longer represents what the variable does),
but a temporary variable is not needed here, for much the same reason as why
we no longer needed the found variable earlier. Take a look at the new line
of code in search4letters, which does the same job as the two lines in
search4vowels:

If that single line of code in search4letters has you scratching your head,
don’t despair. It looks more complex than it is. Let’s go through this line of
code in detail to work out exactly what it does. It starts when the value of the
letters argument is turned into a set:

set(letters)

This call to the set BIF creates a set object from the characters in the
letters variable. We don’t need to assign this set object to a variable, as we
are more interested in using the set of letters right away than in storing the set
in a variable for later use. To use the just-created set object, append a dot, then
specify the method you want to invoke, as even objects that aren’t assigned to
variables have methods. As we know from using sets in the last chapter, the
intersection method takes the set of characters contained in its argument
(phrase) and intersects them with an existing set object (letters):

set(letters).intersection(set(phrase))

And, finally, the result of the intersection is returned to the calling code, thanks
to the return statement:

return set(letters).intersection(set(phrase))

Create a set object
from “letters”.

Perform a set intersection
on the set object made
from “letters” with the
set object made from
“phrase”.

Send the results
back to the
calling code.

Two lines
of code
become
one.

168   Chapter 4

don’t forget!

Creat ing Another Funct ion, 3 of 3
All that remains is Step 4, where we add a docstring to our newly created
function. To do this, add a triple-quoted string right after your new function’s
def line. Here’s what we used (as comments go it’s terse, but effective):

Why go to all the trouble of creating a
one-line function? Isn’t it better to just
copy and paste that line of code whenever
you need it?

And with that, our four steps are complete and search4letters is
ready to be tested.

Functions can hide complexity, too.
It is correct to observe that we’ve just created a one-line
function, which may not feel like much of a “savings.”
However, note that our function contains a complex single
line of code, which we are hiding from the users of this
function, and this can be a very worthwhile practice (not
to mention, way better than all that copying and pasting).

For instance, most programmers would be able to guess
what search4letters does if they were to come
across an invocation of it in a program. However, if
they came across that complex single line of code in a
program, they may well scratch their heads and wonder
what it does. So, even though search4letters
is “short,” it’s still a good idea to abstract this type of
complexity inside a function.

A docstring

you are here 4   169

code reuse

Test Drive
Save the vsearch.py file once more, and then press F5 to try out the search4letters function:

All of these
examples
produce what
we expect them
to.

The search4letters function is now more generic than search4vowels,
in that it takes any set of letters and searches a given phrase for them, rather
than just searching for the letters a, e, i, o, and u. This makes our new
function much more useful than search4vowels. Let’s now imagine that
we have a large, existing codebase that has used search4vowels extensively.
A decision has been made to retire search4vowels and replace it with
search4letters, as the “powers that be” don’t see the need for both
functions, now that search4letters can do what search4vowels does.
A global search-and-replace of your codebase for the name “search4vowels”
with “search4letters” won’t work here, as you’ll need to add in that second
argument value, which is always going to be aeiou when simulating the
behavior of search4vowels with search4letters. So, for instance, this
single-argument call:

			 search4vowels("Don't panic!")

now needs to be replaced with this dual-argument one (which is a much harder
edit to automate):

		 search4letters("Don't panic!", 'aeiou')

It would be nice if we could somehow specify a default value for
search4letters’s second argument, then have the function use it if no
alternative value is provided. If we could arrange to set the default to aeiou,
we’d then be able to apply a global search-and-replace (which is an easy edit).

Wouldn’t it be dreamy
if Python let me specify
default values? But I know
it’s just a fantasy...

Use the “help” BIF to learn how to use “search4letters”.

170   Chapter 4

revert automatically to

Specifying Default Values for Arguments
Any argument to a Python function can be assigned a default value, which can
then be automatically used if the code calling the function fails to supply an
alternate value. The mechanism for assigning a default value to an argument is
straightforward: include the default value as an assignment in the function’s def
line.

Here’s search4letters’s current def line:

def search4letters(phrase:str, letters:str) -> set:

This version of our function’s def line (above) expects exactly two arguments, one
for phrase and another for letters. However, if we assign a default value to
letters, the function’s def line changes to look like this:

We can continue to use the search4letters function in the same way as
before: providing both arguments with values as needed. However, if we forget
to supply the second argument (letters), the interpreter will substitute in the
value aeiou on our behalf.

If we were to make this change to our code in the vsearch.py file (and save it),
we could then invoke our functions as follows:

A default value has been
assigned to the “letters”
argument and will be used
whenever the calling code
doesn’t provide an alternate
value.

>>> search4letters('life, the universe, and everything')
{'a', 'e', 'i', 'u'}
>>> search4letters('life, the universe, and everything', 'aeiou')
{'a', 'e', 'i', 'u'}
>>> search4vowels('life, the universe, and everything')
{'a', 'e', 'i', 'u'}

Not only do these function calls produce the same output, they also demonstrate
that the search4vowels function is no longer needed now that the letters
argument to search4letters supports a default value (compare the first and
last invocations above).

Now, if we are asked to retire the search4vowels function and replace all
invocations of it within our codebase with search4letters, our exploitation
of the default value mechanism for function arguments lets us do so with a simple
global search-and-replace. And we don’t have to use search4letters to only
search for vowels. That second argument allows us to specify any set of characters
to look for. As a consequence, search4letters is now more generic, and more
useful.

These three
function calls
all produce
the same
results.

In this invocation, we are calling
“search4vowels”, not “search4letters”.

def search4letters(phrase:str, letters:str='aeiou') -> set:

you are here 4   171

code reuse

Posit ional Versus Keyword Assignment
As we’ve just seen, the search4letters function can be invoked with
either one or two arguments, the second argument being optional. If you
provide only one argument, the letters argument defaults to a string of
vowels. Take another look at the function’s def line:

def search4letters(phrase:str, letters:str='aeiou') -> set:

As well as supporting default arguments, the Python interpreter also lets
you invoke a function using keyword arguments. To understand what a
keyword argument is, consider how we’ve invoked search4letters up
until now, for example:

Our function’s
“def” line

In the above invocation, the two strings are assigned to the phrase and
letters arguments based on their position. That is, the first string is
assigned to phrase, while the second is assigned to letters. This is known
as positional assignment, as it’s based on the order of the arguments.

In Python, it is also possible to refer to arguments by their argument name,
and when you do, positional ordering no longer applies. This is known as
keyword assignment. To use keywords, assign each string in any order to its
correct argument name when invoking the function, as shown here:

search4letters('galaxy', 'xyz')

def search4letters(phrase:str, letters:str='aeiou') -> set:

search4letters(letters='xyz', phrase='galaxy')

def search4letters(phrase:str, letters:str='aeiou') -> set:

Both invocations of the search4letters function on this page produce
the same result: a set containing the letters x and y. Although it may be
hard to appreciate the benefit of using keyword arguments with our small
search4letters function, the flexibility this feature gives you becomes
clear when you invoke a function that accepts many arguments. We’ll see an
example of one such function (provided by the standard library) before the
end of this chapter.

The ordering of the
arguments isn’t important when keyword arguments are used during invocation.

172   Chapter 4

a quick update

Updat ing What We Know About Funct ions
Let’s update what you know about functions now that you’ve spent some time exploring
how function arguments work:

�� As well as supporting code reuse,
functions can hide complexity. If you
have a complex line of code you
intend to use a lot, abstract it behind
a simple function call.

�� Any function argument can be
assigned a default value in the
function’s def line. When this
happens, the specification of a value
for that argument during a function’s
invocation is optional.

�� As well as assigning arguments by
position, you can use keywords,
too. When you do, any ordering is
acceptable (as any possibility of
ambiguity is removed by the use of
keywords and position doesn’t matter
anymore).

These functions really
hit the mark for me.
How do I go about using
and sharing them?

There’s more than one way to do it.
Now that you have some code that’s worth
sharing, it is reasonable to ask how best to use
and share these functions. As with most things,
there’s more than one answer to that question.
However, on the next pages, you’ll learn how best
to package and distribute your functions to ensure
it’s easy for you and others to benefit from your
work.

you are here 4   173

code reuse

Funct ions Beget Modules
Having gone to all the trouble of creating a reusable function (or two, as is the
case with the functions currently in our vsearch.py file), it is reasonable to ask:
what’s the best way to share functions?

It is possible to share any function by copying and pasting it throughout your
codebase where needed, but as that’s such a wasteful and bad idea, we aren’t
going to consider it for very much longer. Having multiple copies of the same
function littering your codebase is a sure-fire recipe for disaster (should you ever
decide to change how your function works). It’s much better to create a module
that contains a single, canonical copy of any functions you want to share. Which
raises another question: how are modules created in Python?

The answer couldn’t be simpler: a module is any file that contains functions.
Happily, this means that vsearch.py is already a module. Here it is again, in all
its module glory:

“vsearch.py” contains functions in
a file, making it a fully formed
module.

Creat ing modules couldn’t be easier, however...
Creating modules is a piece of cake: simply create a file of the functions you want
to share.

Once your module exists, making its contents available to your programs is also
straightforward: all you have to do is import the module using Python’s import
statement.

This in itself is not complex. However, the interpreter makes the assumption that
the module in question is in the search path, and ensuring this is the case can
be tricky. Let’s explore the ins and outs of module importation over the next few
pages.

Share your
functions
in modules.

module

174   Chapter 4

where’s my module?

How Are Modules Found?
Recall from this book’s first chapter how we imported and then used the
randint function from the random module, which comes included as part
of Python’s standard library. Here’s what we did at the shell:

>>> import random
>>> random.randint(0, 255)
42

Identify the module
to import, then... ...invoke one of

the module’s
functions.What happens during module importation is described in great detail in the

Python documentation, which you are free to go and explore if the nitty-
gritty details float your boat. However, all you really need to know are the
three main locations the interpreter searches when looking for a module.
These are:

Your current working directory
This is the folder that the interpreter thinks you are currently
working in.

1

Your interpreter’s site-packages locations
These are the directories that contain any third-party Python
modules you may have installed (including any written by you).

2

The standard library locations
These are the directories that contains all the modules that make up
the standard library.

3

The order in which locations 2 and 3 are searched by the interpreter can vary
depending on many factors. But don’t worry: it is not important that you
know how this searching mechanism works. What is important to understand
is that the interpreter always searches your current working directory first,
which is what can cause trouble when you’re working with your own custom
modules.

To demonstrate what can go wrong, let’s run though a small exercise that is
designed to highlight the issue. Here’s what you need to do before we begin:

Create a folder called mymodules, which we’ll use to store your modules. It
doesn’t matter where in your filesystem you create this folder; just make sure it
is somewhere where you have read/write access.

Move your vsearch.py file into your newly created mymodules folder.
This file should be the only copy of the vsearch.py file on your computer.

Geek Bits

Depending on the operating
system you’re running, the
name given to a location
that holds files may be either
directory or folder. We’ll use

“folder” in this book, except
when we discuss the current
working directory (which is a
well-established term).

module

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html

you are here 4   175

code reuse

Running Python from the Command Line
We’re going to run the Python interpreter from your operating system’s
command line (or terminal) to demonstrate what can go wrong here (even
though the problem we are about to discuss also manifests in IDLE).

If you are running any version of Windows, open up a command prompt and
follow along with this session. If you are not on Windows, we discuss your
platform halfway down the next page (but read on for now anyway). You
can invoke the Python interpreter (outside of IDLE) by typing py -3 at the
Windows C:\> prompt. Note below how prior to invoking the interpreter, we
use the cd command to make the mymodules folder our current working
directory. Also, observe that we can exit the interpreter at any time by typing
quit() at the >>> prompt:

C:\Users\Head First> cd mymodules

C:\Users\Head First\mymodules> py -3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
>>> vsearch.search4vowels('hitch-hiker')
{'i', 'e'}
>>> vsearch.search4letters('galaxy', 'xyz')
{'y', 'x'}
>>> quit()

C:\Users\Head First\mymodules>

File Edit Window Help Redmond #1

Change into the “mymodules” folder.

Start
Python 3.

Import the
module.

Use the
module’s
functions.

Exit the Python
interpreter and return
to your operating
system’s command prompt.

This works as expected: we successfully import the vsearch module, then
use each of its functions by prefixing the function name with the name of
its module and a dot. Note how the behavior of the >>> prompt at the
command line is identical to the behavior within IDLE (the only difference is
the lack of syntax highlighting). It’s the same Python interpreter, after all.

Although this interaction with the interpreter was successful, it only worked
because we started off in a folder that contained the vsearch.py file.
Doing this makes this folder the current working directory. Based on how the
interpreter searches for modules, we know that the current working directory
is searched first, so it shouldn’t surprise us that this interaction worked and
that the interpreter found our module.

But what happens if our module isn’t in the current
working directory?

module

176   Chapter 4

no import here

Not Found Modules Produce ImportErrors
Repeat the exercise from the last page, after moving out of the folder that contains
our module. Let’s see what happens when we try to import our module now. Here
is another interaction with the Windows command prompt:

C:\Users\Head First> cd \

C:\>py -3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'vsearch'
>>> quit()

C:\>

File Edit Window Help Redmond #2

Change to another folder (in this case, we are moving to the top-level folder).
Start
Python 3
again.

Try to import
the module...

...but this
time we get
an error!

The vsearch.py file is no longer in the interpreter’s current working directory,
as we are now working in a folder other than mymodules. This means our
module file can’t be found, which in turn means we can’t import it—hence the
ImportError from the interpreter.

If we try the same exercise on a platform other than Windows, we get the same
results (whether we’re on Linux, Unix, or Mac OS X). Here’s the above interaction
with the interpreter from within the mymodules folder on OS X:

$ cd mymodules

mymodules$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
>>> vsearch.search4vowels('hitch-hiker')
{'i', 'e'}
>>> vsearch.search4letters('galaxy', 'xyz')
{'x', 'y'}
>>> quit()

mymodules$

File Edit Window Help Cupertino #1Change into the
folder and then type
“python3” to start
the interpreter.

Import the
module.

It works: we
can use the
module’s
functions.

Exit the Python interpreter and return to your operating system’s command prompt.

module

you are here 4   177

code reuse

ImportErrors Occur No Matter the
Platform
If you think running on a non-Windows platform will somehow fix this import
issue we saw on that platform, think again: the same ImportError occurs on
UNIX-like systems, once we change to another folder:

mymodules$ cd

$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'vsearch'
>>> quit()

$

File Edit Window Help Cupertino #2Start
Python 3
again.

Try to import
the module...

...but this
time we get
an error!

Change to another folder (in this case, we are moving to our top-level folder).

As was the case when we were working on Windows, the vsearch.py file is no
longer in the interpreter’s current working directory, as we are now working in a
folder other than mymodules. This means our module file can’t be found, which
in turn means we can’t import it—hence the ImportError from the interpreter.
This problem presents no matter which platform you’re running Python on.

Q: Can’t we be location specific and say something like import C:\mymodules\vsearch on Windows platforms, or
perhaps import /mymodules/vsearch on UNIX-like systems?

A: No, you can’t. Granted, doing something like that does sound tempting, but ultimately won’t work, as you can’t use paths in this way with
Python’s import statement. And, anyway, the last thing you’ll want to do is put hardcoded paths into any of your programs, as paths can
often change (for a whole host of reasons). It is best to avoid hardcoding paths in your code, if at all possible.

Q: If I can’t use paths, how can I arrange for the interpreter to find my modules?

A: If the interpreter can’t find your module in the current working directory, it looks in the site-packages locations as well as in the standard
library (and there’s more about site-packages on the next page). If you can arrange to add your module to one of the site-packages locations,
the interpreter can then find it there (no matter its path).

module

178   Chapter 4

install into Python

Gett ing a Module into Site-packages
Recall what we had to say about site-packages a few pages back when we
introduced them as the second of three locations searched by the interpreter’s
import mechanism:

Your interpreter’s site-packages locations
These are the directories that contain any third-party Python modules
which you may have installed (including any written by you).

2

As the provision and support of third-party modules is central to Python’s
code reuse strategy, it should come as no surprise that the interpreter comes
with the built-in ability to add modules to your Python setup.

Note that the set of modules included with the standard library is managed
by the Python core developers, and this large collection of modules has been
designed to be widely used, but not tampered with. Specifically, don’t add or
remove your own modules to/from the standard library. However, adding or
removing modules to your site-packages locations is positively encouraged, so
much so that Python comes with some tools to make it straightforward.

Using “setuptools” to install into site-packages
As of release 3.4 of Python, the standard library includes a module called
setuptools, which can be used to add any module into site-packages.
Although the details of module distribution can—initially—appear complex,
all we want to do here is install vsearch into site-packages, which is
something setuptools is more than capable of doing in three steps:

Create a distribution description
This identifies the module we want setuptools to install.

1

Generate a distribution file
Using Python at the command line, we’ll create a shareable
distribution file to contain our module’s code.

2

Install the distribution file
Again, using Python at the command line, install the distribution
file (which includes our module) into site-packages.

3

Python 3.4 (or
newer) makes using
setuptools a breeze.
If you aren’t running
3.4 (or newer),
consider upgrading.

Step 1 requires us to create (at a minimum) two descriptive files for our
module: setup.py and README.txt. Let’s see what’s involved.

module

you are here 4   179

code reuse

Creat ing the Required Setup Files
If we follow the three steps shown at the bottom of the last page, we’ll end up
creating a distribution package for our module. This package is a single
compressed file that contains everything required to install our module into
site-packages.

For Step 1, Create a distribution description, we need to create two files that we’ll
place in the same folder as our vsearch.py file. We’ll do this no matter
what platform we’re running on. The first file, which must be called setup.
py, describes our module in some detail.

Find below the setup.py file we created to describe the module in the
vsearch.py file. It contains two lines of Python code: the first line imports
the setup function from the setuptools module, while the second
invokes the setup function.

The setup function accepts a large number of arguments, many of
which are optional. Note how, for readability purposes, our call to setup
is spread over nine lines. We’re taking advantage of Python’s support for
keyword arguments to clearly indicate which value is being assigned to which
argument in this call. The most important arguments are highlighted; the first
names the distribution, while the second lists the .py files to include when
creating the distribution package:

from setuptools import setup

setup(
 name='vsearch',
 version='1.0',
 description='The Head First Python Search Tools',
 author='HF Python 2e',
 author_email='hfpy2e@gmail.com',
 url='headfirstlabs.com',
 py_modules=['vsearch'],
)

Import the “setup” function from the “setuptools” module. The “name” argument
identifies the distribution. It’s common practice to name the distribution after the module.

This is a list of “.py” files to incl
ude in

the package. For this example, we only

have one: “vsearch”.In addition to setup.py, the setuptools mechanism requires the
existence of one other file—a “readme” file—into which you can put a
textual description of your package. Although having this file is required,
its contents are optional, so (for now) you can create an empty file called
README.txt in the same folder as the setup.py file. This is enough to
satisfy the requirement for a second file in Step 1.

This is an invocation of
the “setup” function.
We’re spreading its
arguments over many
lines.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

We’ll check off each completed step as we work through this material.

180   Chapter 4

setup on windows

Creat ing the Distr ibut ion File
At this stage, you should have three files, which we have put in our
mymodules folder: vsearch.py, setup.py, and README.txt.

We’re now ready to create a distribution package from these files. This is Step
2 from our earlier list: Generate a distribution file. We’ll do this at the command
line. Although doing so is straightforward, this step requires that different
commands be entered based on whether you are on Windows or on one of the
UNIX-like operating systems (Linux, Unix, or Mac OS X).

Creat ing a distr ibut ion f i le on Windows
If you are running on Windows, open a command prompt in the folder that
contains your three files, then enter this command:

C:\Users\Head First\mymodules> py -3 setup.py sdist

The Python interpreter goes to work immediately after you issue this
command. A large number of messages appear on screen (which we show
here in an abridged form):

running sdist
running egg_info
creating vsearch.egg-info
	 ...

creating dist
creating 'dist\vsearch-1.0.zip' and adding 'vsearch-1.0' to it
adding 'vsearch-1.0\PKG-INFO'
adding 'vsearch-1.0\README.txt'
	 ...

adding 'vsearch-1.0\vsearch.egg-info\top_level.txt'
removing 'vsearch-1.0' (and everything under it)

When the Windows command prompt reappears, your three files have
been combined into a single distribution file. This is an installable file
that contains the source code for your module and, in this case, is called
vsearch-1.0.zip.

You’ll find your newly created ZIP file in a folder called dist, which has also
been created by setuptools under the folder you are working in (which is
mymodules in our case).

Run Python 3 on Windows.

Execute the code in “setup.py”...
... and pass
“sdist” as an
argument.

If you see this message, all is well. If you get errors, check that you’re running at least Python 3.4, and also make sure your “setup.py” file is identical to ours.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

you are here 4   181

code reuse

Distribut ion Files on UNIX-like OSes
If you are not working on Windows, you can create a distribution file in much
the same way as on the previous page. With the three files (setup.py,
README.txt, and vsearch.py) in a folder, issue this command at your
operating system’s command line:

mymodules$ python3 setup.py sdist

Run Python 3.

Execute the code in “setup.py”...
...and pass
“sdist” as an
argument.

Like on Windows, this command produces a slew of messages on screen:

running sdist
running egg_info
creating vsearch.egg-info
	 ...

running check
creating vsearch-1.0
creating vsearch-1.0/vsearch.egg-info
	 ...

creating dist
Creating tar archive
removing 'vsearch-1.0’ (and everything under it)

When your operating system’s command line reappears, your three files have
been combined into a source distribution file (hence the sdist argument
above). This is an installable file that contains the source code for your
module and, in this case, is called vsearch-1.0.tar.gz.

You’ll find your newly created archive file in a folder called dist, which
has also been created by setuptools under the folder you are working in
(which is mymodules in our case).

With your source distribution file created (as a ZIP or as
a compressed tar archive), you’re now ready to install
your module into site-packages.

The messages differ slightly from those produced on Windows. If you see this message, all is well. If not (as with Windows) double-check everything.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

182   Chapter 4

ready to install

Installing Packages with “pip”
Now that your distribution file exists as a ZIP or a tarred archive (depending on your
platform), it’s time for Step 3: Install the distribution file. As with many such things,
Python comes with the tools to make this straightforward. In particular, Python 3.4
(and newer) includes a tool called pip, which is the Package Installer for Python.

Step 3 on Windows
Locate your newly created ZIP file under the dist folder (recall that the file is
called vsearch-1.0.zip). While in the Windows Explorer, hold down the Shift
key, then right-click your mouse to bring up a context-sensitive menu. Select Open
command window here from this menu. A new Windows command prompt opens. At this
command prompt, type this line to complete Step 3:

C:\Users\...\dist> py -3 -m pip install vsearch-1.0.zip

If this command fails with a permissions error, you may need to restart the command
prompt as the Windows administrator, then try again.

When the above command succeeds, the following messages appear on screen:

Processing c:\users\...\dist\vsearch-1.0.zip
Installing collected packages: vsearch
 Running setup.py install for vsearch
Successfully installed vsearch-1.0

Step 3 on UNIX-like OSes
On Linux, Unix, or Mac OS X, open a terminal within the newly created dict folder,
and then issue this command at the prompt:

.../dict$ sudo python3 -m pip install vsearch-1.0.tar.gz

When the above command succeeds, the following messages appear on screen:

Processing ./vsearch-1.0.tar.gz
Installing collected packages: vsearch
 Running setup.py install for vsearch
Successfully installed vsearch-1.0

The vsearch module is now installed as part of site-packages.

Run Python 3 with the module pip, and then ask pip to install the identified ZIP file.

Success!

Success!

We are using the “sudo” command here to ensure we install with the correct permissions.

Run Python 3 with the module pip, and then ask pip to install the identified compressed tar file.

Create a distribution
description.

Generate a
distribution file.

Install the
distribution file.

you are here 4   183

code reuse

Modules: What We Know Already
Now that our vsearch module has been installed, we can use import vsearch
in any of our programs, safe in the knowledge that the interpreter can now find the
module’s functions when needed.

If we later decide to update any of the module’s code, we can repeat these three steps
to install any update into site-packages. If you do produce a new version of your
module, be sure to assign a new version number within the setup.py file.

Let’s take a moment to summarize what we now know about modules:

�� A module is one or more functions
saved in a file.

�� You can share a module by
ensuring it is always available with
the interpreter’s current working
directory (which is possible, but
brittle) or within the interpreter’s site-
packages locations (by far the better
choice).

�� Following the setuptools
three-step process ensures that
your module is installed into site-
packages, which allows you to
import the module and use its
functions no matter what your current
working directory happens to be.

Giv ing your code away (a.k .a. sharing)
Now that you have a distribution file created, you can share this file with other Python
programmers, allowing them to install your module using pip, too. You can share
your file in one of two ways: informally, or formally.

To share your module informally, simply distribute it in whatever way you wish and to
whomever you wish (perhaps using email, a USB stick, or via a download from your
personal website). It’s up to you, really.

To share your module formally, you can upload your distribution file to Python’s
centrally managed web-based software repository, called PyPI (pronounced “pie-
pee-eye,” and short for the Python Package Index). This site exists to allow all manner
of Python programmers to share all manner of third-party Python modules. To
learn more about what’s on offer, visit the PyPI site at: https://pypi.python.org/
pypi. To learn more about the process of uploading and sharing your distribution
files through PyPI, read the online guide maintained by the Python Packaging Authority,
which you’ll find here: https://www.pypa.io. (There’s not much to it, but the
details are beyond the scope of this book.)

We are nearly done with our introduction to functions and modules. There’s just a
small mystery that needs our attention (for not more than five minutes). Flip the page
when you’re ready.

Any Python
programmer
can also use
pip to install
your module.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

All done!

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://www.pypa.io/

184   Chapter 4

copy or reference

The case of the misbehaving function arguments
Tom and Sarah have just worked through this chapter, and are now arguing
over the behavior of function arguments.

Tom is convinced that when arguments are passed into a function, the data
is passed by value, and he’s written a small function called double to
help make his case. Tom’s double function works with any type of data
provided to it.

Here’s Tom’s code:

	 def double(arg):
	 print('Before: ', arg)
	 arg = arg * 2

	 print('After: ', arg)

Sarah, on the other hand, is convinced that when arguments are passed into
a function, the data is passed by reference. Sarah has also written a small
function, called change, which works with lists and helps to prove her point.

Here’s a copy of Sarah’s code:

	 def change(arg):
	 print('Before: ', arg)
	 arg.append('More data')
	 print('After: ', arg)

We’d rather nobody was arguing about this type of thing, as—until now—
Tom and Sarah have been the best of programming buddies. To help resolve
this, let’s experiment at the >>> prompt in an attempt to see who is right:

“by value” Tom, or “by reference” Sarah. They can’t both be right, can they?
It’s certainly a bit of a mystery that needs solving, which leads to this often-
asked question:

Do function arguments support by-value or
by-reference call semantics in Python?

Five Minute
Mystery

Geek Bits

In case you need a quick refresher, note that by-value argument passing refers to the practice of using the value of
a variable in place of a function’s argument. If the value changes in the function’s suite, it has no effect on the value
of the variable in the code that called the function. Think of the argument as a copy of the original variable’s value.
By-reference argument passing (sometimes referred to as by-address argument passing) maintains a link to the
variable in the code that called the function. If the variable in the function’s suite is changed, the value in the code
that called the function changes, too. Think of the argument as an alias to the original variable.

you are here 4   185

code reuse

Demonstrat ing Call-by-Value Semantics
To work out what Tom and Sarah are arguing about, let’s put their functions into
their very own module, which we’ll call mystery.py. Here’s the module in an
IDLE edit window:

These two functions
are similar. Each
takes a single
argument, displays it
on screen, manipulates
its value, and then
displays it on screen
again.

This function
doubles the
value passed in.

This function appends a
string to any passed in list.

As soon as Tom sees this module on screen, he sits down, takes control of the
keyboard, presses F5, and then types the following into IDLE’s >>> prompt.
Once done, Tom leans back in his chair, crosses his arms, and says: “See? I told
you it’s call-by-value.” Take a look at Tom’s shell interactions with his function:

>>> num = 10
>>> double(num)
Before: 10
After: 20
>>> num
10
>>> saying = 'Hello '
>>> double(saying)
Before: Hello
After: Hello Hello
>>> saying
'Hello '
>>> numbers = [42, 256, 16]
>>> double(numbers)
Before: [42, 256, 16]
After: [42, 256, 16, 42, 256, 16]
>>> numbers
[42, 256, 16]

Tom invokes
the “double”
function
three times:
once with an
integer value,
then with a
string, and
finally with
a list.

Each invocation confirms that the value passed in as an argument is changed within the function’s suite, but that the value at the shell remains unchanged. That is,: the function arguments appear to conform to call-by-value semantics.

186   Chapter 4

over to sarah

Demonstrat ing Call-by-Reference Semantics
Undeterred by Tom’s apparent slam-dunk, Sarah sits down and takes control of the
keyboard in preparation for interacting with the shell. Here’s the code in the IDLE
edit window once more, with Sarah’s change function ready for action:

The is the
“mystery.py”
module. Tom’s

function

Sarah’s
function

Sarah types a few lines of code into the >>> prompt, then leans back in her
chair, crosses her arms, and says to Tom: “Well, if Python only supports call-
by-value, how do you explain this behavior?” Tom is speechless.

Take a look at Sarah’s interaction with the shell:

>>> numbers = [42, 256, 16]
>>> change(numbers)
Before: [42, 256, 16]
After: [42, 256, 16, 'More data']
>>> numbers
[42, 256, 16, 'More data']

Using the same
list data as Tom,
Sarah invokes
her “change”
function.

Look what’s happened! This time the argument’s value has been changed in the function as well as at the shell. This would seem to suggest that Python functions *also* support call-by-reference semantics.

This is strange behavior.

Tom’s function clearly shows call-by-value argument semantics, whereas
Sarah’s function demonstrates call-by-reference.

How can this be? What’s going on here? Does Python support both?

you are here 4   187

code reuse

Solved: the case of the misbehaving function arguments
Do Python function arguments support by-value or by-reference call semantics?

Here’s the kicker: both Tom and Sarah are right. Depending on the situation, Python’s function argument
semantics support both call-by-value and call-by-reference.

Recall once again that variables in Python aren’t variables as we are used to thinking about them in other
programming languages; variables are object references. It is useful to think of the value stored in the
variable as being the memory address of the value, not its actual value. It’s this memory address that’s passed
into a function, not the actual value. This means that Python’s functions support what’s more correctly called
by-object-reference call semantics.

Based on the type of the object referred to, the actual call semantics that apply at any point in time can differ.
So, how come in Tom’s and Sarah’s functions the arguments appeared to conform to by-value and by-reference
call semantics? First off, they didn’t—they only appeared to. What actually happens is that the interpreter looks
at the type of the value referred to by the object reference (the memory address) and, if the variable refers to a
mutable value, call-by-reference semantics apply. If the type of the data referred to is immutable, call-by-
value semantics kick in. Consider now what this means for our data.

Lists, dictionaries, and sets (being mutable) are always passed into a function by reference—
any changes made to the variable’s data structure within the function’s suite are reflected in
the calling code. The data is mutable, after all.

Strings, integers, and tuples (being immutable) are always passed into a function by value—
any changes to the variable within the function are private to the function and are not
reflected in the calling code. As the data is immutable, it cannot change.

Which all makes sense until you consider this line of code:

	 arg = arg * 2

How come this line of code appeared to change a passed-in list within the function’s suite, but when the list
was displayed in the shell after invocation, the list hadn’t changed (leading Tom to believe—incorrectly—that
all argument passing conformed to call-by-value)? On the face of things, this looks like a bug in the interpreter,
as we’ve just stated that changes to a mutable value are reflected back in the calling code, but they aren’t here.
That is, Tom’s function didn’t change the numbers list in the calling code, even though lists are mutable. So,
what gives?

To understand what has happened here, consider that the above line of code is an assignment statement.
Here’s what happens during assignment: the code to the right of the = symbol is executed first, and then
whatever value is created has its object reference assigned to the variable on the left of the = symbol. Executing
the code arg * 2 creates a new value, which is assigned a new object reference, which is then assigned to the
arg variable, overwriting the previous object reference stored in arg in the function’s suite. However, the “old”
object reference still exists in the calling code and its value hasn’t changed, so the shell still sees the original list,
not the new doubled list created in Tom’s code. Contrast this behavior to Sarah’s code, which calls the append
method on an existing list. As there’s no assignment here, there’s no overwriting of object references, so Sarah’s
code changes the list in the shell, too, as both the list referred to in the functions’ suite and the list referred to in
the calling code have the same object reference.

With our mystery solved, we’re nearly ready for Chapter 5. There’s just one outstanding issue.

Five Minute
Mystery

Solved

188   Chapter 4

Can I Test for PEP 8 Compliance?

I have a quick question before we
move on. I like the idea of writing
PEP 8 compliant code...is there any way
I can automatically check my code for

compliance?

Yes. It is possible.
But not with Python alone, as the
Python interpreter does not provide
any way to check code for PEP 8
compliance. However, there are a
number of third-party tools that do.

Before jumping into Chapter 5, let’s
take a little detour and look at one
tool that can help you stay on the
right side of PEP 8 compliance.

what about pep 8?

you are here 4   189

code reuse

Gett ing Ready to Check PEP 8 Compliance
Let’s detour for just a moment to check our code for PEP 8 compliance.

The Python programming community at large has spent a great deal of time
creating developer tools to make the lives of Python programmers a little bit
better. One such tool is pytest, which is a testing framework that is primarily
designed to make the testing of Python programs easier. No matter what type
of tests you’re writing, pytest can help. And you can add plug-ins to pytest to
extend its capabilities.

One such plug-in is pep8, which uses the pytest testing framework to check your
code for violations of the PEP 8 guidelines.

Recalling our code
Let’s remind ourselves of our vsearch.py code once more, before feeding it to
the pytest/pep8 combination to find out how PEP 8–compliant it is. Note that
we’ll need to install both of these developer tools, as they do not come installed
with Python (we’ll do that over the page).

Once more, here is the code to the vsearch.py module, which is going to be
checked for compliance to the PEP 8 guidelines:

Learn more about
pytest from https://
docs.pytest.org/en/
latest/.

def search4vowels(phrase:str) -> set:
 """Return any vowels found in a supplied phrase."""
 vowels = set('aeiou')
 return vowels.intersection(set(phrase))

def search4letters(phrase:str, letters:str='aeiou') -> set:
 """Return a set of the 'letters' found in 'phrase'."""
 return set(letters).intersection(set(phrase))

Installing pytest and the pep8 plug-in
Earlier in this chapter, you used the pip tool to install your vsearch.py
module into the Python interpreter on your computer. The pip tool can also be
used to install third-party code into your interpreter.

To do so, you need to operate at your operating system’s command prompt (and
be connected to the Internet). You’ll use pip in the next chapter to install a
third-party library. For now, though, let’s use pip to install the pytest testing
framework and the pep8 plug-in.

This
code is in “vsearch.py”.

https://docs.pytest.org/en/latest/

190   Chapter 4

py.test intro

Install the Test ing Developer Tools
In the example screens that follow, we are showing the messages that appear when you
are running on the Windows platform. On Windows, you invoke Python 3 using the
py -3 command. If you are on Linux or Mac OS X, replace the Windows command
with sudo python3. To install pytest using pip on Windows, issue this command
from the command prompt while running as administrator (search for cmd.exe, then
right-click on it, and choose Run as Administrator from the pop-up menu):

		 py -3 -m pip install pytest

Start in
Administrator
mode...

...then issue the
“pip” command to
install “pytest”...

...then check
whether it
installed
successfully.

If you examine the messages produced by pip, you’ll notice that two of pytest’s
dependencies were also installed (colorama and py). The same thing happens when
you use pip to install the pep8 plug-in: it also installs a host of dependencies. Here’s
the command to install the plug-in:

		 py -3 -m pip install pytest-pep8

Remember: if you aren’t running Windows, replace “py -3” with “sudo python3”.

While still in
Administrator mode,
issue this command,
which installs the
“pep8” plug-in.

This command
succeeded too, and also installed the required dependencies.

you are here 4   191

code reuse

How PEP 8–Compliant Is Our Code?
With pytest and pep8 installed, you’re now ready to test your code for PEP 8
compliance. Regardless of the operating system you’re using, you’ll issue the same
command (as only the installation instructions differ on each platform).

The pytest installation process has installed a new program on your computer
called py.test. Let’s run this program now to check our vsearch.py code for
PEP 8 compliance. Make sure you are in the same folder as the one that contains
the vsearch.py file, then issue this command:

		 py.test --pep8 vsearch.py

Here’s the output produced when we did this on our Windows computer:

Whoops! It looks like we have failures, which means this code is not as compliant
with the PEP 8 guidelines as it could be.

Take a moment to read the messages shown here (or on your screen, if you are
following along). All of the “failures” appear to refer—in some way—to whitespace
(for instance, spaces, tabs, newlines, and the like). Let’s take a look at each of them
in a little more detail.

Uh, oh. The red output
can’t be good, can it?

192   Chapter 4

py.test --pep8 rocks

Understanding the Failure Messages
Together, pytest and the pep8 plug-in have highlighted five issues with our
vsearch.py code.

The first issue has to do with the fact that we haven’t inserted a space after the :
character when annotating our function’s arguments, and we’ve done this in three
places. Look at the first message, noting pytest’s use of the caret character (^) to
indicate exactly where the problem is:

		 ...:2:25: E231 missing whitespace after ':'
def search4vowels(phrase:str) -> set:
			 ^

Here’s
what’s
wrong.

Here’s where
it’s wrong.

If you look at the two issues at the bottom of pytest’s output, you’ll see that
we’ve repeated this mistake in three locations: once on line 2, and twice on line 7.
There’s an easy fix: add a single space character after the colon.

The next issue may not seem like a big deal, but is raised as a failure because the
line of code in question (line 3) does break a PEP 8 guideline that says not to
include extra spaces at the end of lines:

					 ...:3:56: W291 trailing whitespace
"""Return any vowels found in a supplied phrase."""
 ^

Dealing with this issue on line 3 is another easy fix: remove all trailing whitespace.

The last issue (at the start of line 7) is this:

					 ...7:1: E302 expected 2 blank lines, found 1
def search4letters(phrase:str, letters:str='aeiou') -> set:
^

What’s wrong

Where it’s wrong

This issue presents at the start of line 7. Here’s what’s wrong.

There is a PEP 8 guideline that offers this advice for creating functions in a
module: Surround top-level function and class definitions with two blank lines. In our code,
the search4vowels and search4letters functions are both at the “top
level” of the vsearch.py file, and are separated from each other by a single
blank line. To be PEP 8–compliant, there should be two blank lines here.

Again, it’s an easy fix: insert an extra blank line between the two functions. Let’s apply
these fixes now, then retest our amended code.

BTW: Check out
http://pep8.org/ for a
beautifully rendered
version of Python’s
style guidelines.

http://pep8.org/

you are here 4   193

code reuse

Conf irming PEP 8 Compliance
With the amendments made to the Python code in vsearch.py, the file’s
contents now look like this:

def search4vowels(phrase: str) -> set:
 """Return any vowels found in a supplied phrase."""
 vowels = set('aeiou')
 return vowels.intersection(set(phrase))

def search4letters(phrase: str, letters: str='aeiou') -> set:
 """Return a set of the 'letters' found in 'phrase'."""
 return set(letters).intersection(set(phrase))

The PEP 8–compliant version of “vsearch.py”.

When this version of the code is run through pytest’s pep8 plug-in, the output
confirms we no longer have any issues with PEP 8 compliance. Here’s what we
saw on our computer (again, running on Windows):

Conformance to PEP 8 is a good thing
If you’re looking at all of this wondering what all the fuss is about (especially over
a little bit of whitespace), think carefully about why you’d want to comply to PEP
8. The PEP 8 documentation states that readability counts, and that code is read
much more often than it is written. If your code conforms to a standard coding style, it
follows that reading it is easier, as it “looks like” everything else the programmer
has seen. Consistency is a very good thing.

From this point forward (and as much as is practical), all of the code in this book
will conform to the PEP 8 guidelines. You should try to ensure your code does too.

Green is good—this code has no PEP 8 issues. §

This is the
end of the
pytest detour. See you in
Chapter 5.

194   Chapter 4

the code

Chapter 4’s Code

def search4vowels(phrase: str) -> set:
 """Returns the set of vowels found in 'phrase'."""
 return set('aeiou').intersection(set(phrase))

def search4letters(phrase: str, letters: str='aeiou') -> set:
 """Returns the set of 'letters' found in 'phrase'."""
 return set(letters).intersection(set(phrase))

This is the code
from the “vsearch.py” module, which contains our two functions: “search4vowels” and “search4letters”.

from setuptools import setup

setup(
 name='vsearch',
 version='1.0',
 description='The Head First Python Search Tools',
 author='HF Python 2e',
 author_email='hfpy2e@gmail.com',
 url='headfirstlabs.com',
 py_modules=['vsearch'],
)

This is the “setup.
py” file, which
allowed us to
turn our module
into an installable
distribution.

def double(arg):
 print('Before: ', arg)
 arg = arg * 2
 print('After: ', arg)

def change(arg: list):
 print('Before: ', arg)
 arg.append('More data')
 print('After: ', arg)

And this is the “mystery.py” module, which had Tom and Sarah upset at each other. Thankfully, now that the mystery is solved, they are back to being programming buddies once more. §

	Title page
	Copyright
	Table of Contents
	Intro
	Chapter 1: The Basics
	Chapter 2: List Data
	Chapter 3: Structured Data
	Chapter 4: Code Reuse

