O'REILLY"

Head First

Python

iandly Guide

A Brain-

\
3 b | Model data as
=E =P lists, tuples,
Load important Python ¢ sgts_, a,nd.
concepts directly into dictionaries
your brain
' Objects?
. Doq b geF Decorators?
in a pickle: Q tors?
use DB-API - ,enell’la,hors.
instead ey’'re all here.

Share your code
with modules

2

Pa,1'11 Barry

Head First Python

Second Edition
Wouldn't it be dreamy if there
were a Python book that didn't
make you wish you were anywhere
other than stuck in front of your
computer writing code? I guess it's
just a fantasy...
Paul Barry

O'REILLY"

Beijing *« Boston ¢ Farnham e« Sebastopol ¢ Tokyo

Head First Python, Second Edition
by Paul Barry

Copyright © 2017 Paul Barry. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Dawn Schanafelt

Cover Designer: Randy Comer Deirdre
Production Editor: Melanie Yarbrough /
Proofreader: Rachel Monaghan

Indexer: Lucie Haskins

Head First Logo: Eric Freeman

Page Viewers: Deirdre, Joseph, Aaron, and Aideen

Printing History:

November 2010: First edition.
November 2016: Second edition. ‘)OSCPH

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Python, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No weblogs were inappropriately searched in the making of this book, and the photos on this page (as well as the
one on the author page) were supplied by Aideen Barry.

ISBN: 978-1-491-91953-8
[GP] [2020-09-25]

I continue to dedicate this book to all those
generous people in the Python community who
continue to help make Python what it is today.

And to all those that made learning Python and
its technologies just complex enough that people
need a book like #us to learn it.

the author

Auvthor of Head First Python, 2nd Edition

While out wa\kin?y
Paul pauses to

distuss the torveet
yromncla{uon of the
wovrd UCE‘C wu’ch his

eving wi C

|on3——50‘(:

viii

This is j\

Deivdre’s usual
reattion. ©®

Paul Barry lives and works in Carlow, Ireland, which
1s a small town of 35,000 people or so, located just over
80km southwest of the nation’s capital: Dublin.

Paul has a B.Sc. in Information Systems, as well as an M. Sc.
in Computing. He also has a postgraduate qualification in
Learning and Teaching.

Paul has worked at The Institute of Technology, Carlow
since 1995, and lectured there since 1997. Prior to
becoming involved in teaching, Paul spent a decade in
the I'T industry working in Ireland and Canada, with the
majority of his work within a healthcare setting. Paul is
married to Deirdre, and they have three children (two of
whom are now in college).

The Python programming language (and its related
technologies) has formed an integral part of Paul’s
undergraduate courses since the 2007 academic year.

Paul is the author (or coauthor) of four other technical
books: two on Python and two on Perl. In the past, he’s
written a heap of material for Linux Journal Magazine,
where he was a contributing editor.

Paul was raised in Belfast, Northern Ireland, which may go
some of the way toward explaining his take on things
as well as his funny accent (unless, of course, you're also
from “The North,” in which case Paul’s outlook and

accent are perfectly normal).

Find Paul on Twutter (@barrypy), as well as at his home on
the Web: http://paulbarry.itcarlow.ie.

http://paulbarry.itcarlow.ie

table of contents

the basics
Getting Started Quickly

Get going with Python programming as quickly as possible.
In this chapter, we introduce the basics of programming in Python, and we do this in
typical Head First style: by jumping right in. After just a few pages, you'll have run
your first sample program. By the end of the chapter, you’ll not only be able to run the
sample program, but you'll understand its code too (and more besides). Along the way,

you’ll learn about a few of the things that make Python the programming language it is.

Understanding IDLE’s Windows 4

Executing Code, One Statement at a Time 8

Functions + Modules = The Standard Library 9

Data Structures Come Built-in 13
Invoking Methods Obtains Results 14
Deciding When to Run Blocks of Code 15
What “else” Can You Have with “if”? 17
Suites Can Contain Embedded Suites 18
Returning to the Python Shell 22
Experimenting at the Shell 23
Iterating Over a Sequence of Objects 24
Iterating a Specific Number of Times 25
Applying the Outcome of Task #1 to Our Code 26
Arranging to Pause Execution 28
Generating Random Integers with Python 30
Coding a Serious Business Application 38
Is Indentation Driving You Crazy? 40
Asking the Interpreter for Help on a Function 41
Experimenting with Ranges 42
Chapter 1’s Code 46

table of contents

list data

Working with Data
All programs process data, and Python programs are no exception.

In fact, take a look around: data is everywhere. A lot of, if not most, programming is all about

data: acquiring data, processing data, understanding data. To work with data effectively, you need
somewhere to put your data when processing it. Python shines in this regard, thanks (in no small
part) to its inclusion of a handful of widely applicable data structures: lists, dictionaries, tuples, and
sets. In this chapter, we'll preview all four, before spending the majority of this chapter digging deeper
into lists (and we’ll deep-dive into the other three in the next chapter). We're covering these data

structures early, as most of what you'll likely do with Python will revolve around working with data.

Numbers, Strings...and Objects 48
Meet the Four Built-in Data Structures 50
An Unordered Data Structure: Dictionary 32
A Data Structure That Avoids Duplicates: Set 53
Creating Lists Literally 55
Use Your Editor When Working on More Than a Few Lines of Code 57
“Growing” a List at Runtime 58
Checking for Membership with “in” 59
Removing Objects from a List 62
Extending a List with Objects 64
Inserting an Object into a List 65
How to Copy a Data Structure 73
Lists Extend the Square Bracket Notation 75
Lists Understand Start, Stop, and Step 76
Starting and Stopping with Lists 78
Putting Slices to Work on Lists 80
Python’s “for” Loop Understands Lists 86
Marvin’s Slices in Detail 88
When Not to Use Lists 91
Chapter 2’ Code, 1 of 2 92
0 | 2 3 & s b 1 8 9 o1l
22 S I I
Jd2 0 o 9 -8 -1 b s & 3 _3 | Xi

table of contents

structured data
Working with Structured Data

Python’s list data structure is great, but itisn’t a data
panacea. When you have truly structured data (and using a list to store it may not be
the best choice), Python comes to your rescue with its built-in dictionary. Out of the box,
the dictionary lets you store and manipulate any collection of key/value pairs. We look
long and hard at Python’s dictionary in this chapter, and—along the way—meet set and
tuple, too. Together with the list (which we met in the previous chapter), the dictionary,
set, and tuple data structures provide a set of built-in data tools that help to make Python

and data a powerful combination.

A Dictionary Stores Key/Value Pairs 96
How to Spot a Dictionary in Code 98
Insertion Order Is NOT Maintained 99
Value Lookup with Square Brackets 100
Working with Dictionaries at Runtime 101
Updating a Frequency Counter 105
Iterating Over a Dictionary 107
Iterating Over Keys and Values 108
Iterating Over a Dictionary with “items” 110
Just How Dynamic Are Dictionaries? 114
Avoiding KeyErrors at Runtime 116
Checking for Membership with “in” 117
Ensuring Initialization Before Use 118
Name: Ford Prefect Substituting “not in” for “in” 119
Gender: Male
Oceeupation: Researeher Putting the “setdefault” Method to Work 120
Home Planet: Betelgeuse Seven | Creating Sets Efficiently 124
Taking Advantage of Set Methods 125
Making the Case for Tuples 132
Combining the Built-in Data Structures 135
Accessing a Complex Data Structure’s Data 141
Chapter 3’s Code, 1 of 2 143

Xii

table of contents

code reuse

Functions and Modules

Reusing code is key to building a maintainable system.

And when it comes to reusing code in Python, it all starts and ends with the humble
function. Take some lines of code, give them a name, and you’ve got a function (which
can be reused). Take a collection of functions and package them as a file, and you've
got a module (which can also be reused). It's true what they say: it’s good to share, and
by the end of this chapter, you'll be well on your way to sharing and reusing your code,

thanks to an understanding of how Python’s functions and modules work.

Reusing Code with Functions 146
Introducing Functions 147
Invoking Your Function 150
Functions Can Accept Arguments 154
Returning One Value 158
Returning More Than One Value 159
Recalling the Built-in Data Structures 161
Making a Generically Useful Function 165
Creating Another Function, 1 of 3 166
Specifying Default Values for Arguments 170
Positional Versus Keyword Assignment 171
Updating What We Know About Functions 172
Running Python from the Command Line 175
Creating the Required Setup Files 179
Creating the Distribution File 180
Installing Packages with “pip” 182
Demonstrating Gall-by-Value Semantics 185
Demonstrating Call-by-Reference Semantics 186
Install the Testing Developer Tools 190
How PEP 8—Compliant Is Our Code? 191
— Understanding the Failure Messages 192
Chapter 4’s Programs 194

xiii

the howto

how to use this bool
Intro

I can't believe
they put thatina
Python book.

Is this book for you?

This book is foranyone

With the mone

y to
for it. And it makegpdy
agreaf

n this seetion, we answer the burning c\ucs{:-on:

i 00! ?"
“So why DID they ?u‘(: that in @ P\/{‘)\on book

XXVii

how to use this

Who Is This Book For?

If you can answer “yes” to all of these:

o Do you already know how to program in another
programming language?

e Do you wish you had the know-how to program Python,
add it to your list of tools, and make it do new things?

e Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

this book is for you.

This is NOT a

Who should probably back away from this book? reference hook,
anJ we assume

If you can answer “yes” to any of these:

you’ve Programmed

o Do you already know most of what you need to know to l)e{ore.
program with Python?

e Are you looking for a reference book to Python, one that
covers all the details in excruciating detail?

e Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Python book should cover everything and if it
bores the reader to tears in the process, then so much
the better?

this book is not for you.

[Note -('\\rom ma\rkc{:ihgr this book

is :cor anyone with a evedit card..
we'll aceept a theek, to0.]

XXViii

the

We Know What You're Thinking

“How can thus be a serious Python book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”’

We know what your brain is thinking

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain Anow what’s important? Suppose you'’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge. Great. Only 450
And that’s how your brain knows... more dull, dry,
boring pages.

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. \/pue \J‘fa.‘“
You're studying. Getting ready for an exam. Or trying to learn some tough ~ TR|S o
technical topic your boss thinks will take a week, 10 days at the most.

savingy

Just one problem. Your brain’s trying to do you a big favor. It’s trying to \
make sure that this obviously nonimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those “party” photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I'm registering on the
emotional Richter scale right now, I really do want you to keep this
stufl’ around.”

XXix

XXX

how to use this

e think of a “Head First” reader as a Jearner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the latest
research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don't take yourself too seriously. Which would you pay more attention to:a stimulating dinner party

companionora lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We've all had the”l really want to learn this, but | can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn't have to be

boring. Your brain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you caré about. You remember when you feel something.

No, we're not talking heart-wrenching stories about a boy and his dog. We're talking emotions like

surprise, curiosity, fun, “what the...?", and the feeling of “l rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I'm more technical than

thou” Bob from engineering doesn't.

the

Metacognition: Thinking About Thinking

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

T wonder how
I can trick my brain
intfo remembering

. -, . this stuff...
Most of us did not take courses on metacognition or learning theory when we uff

were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how 0
to solve programming problems with Python. And you probably don’t want to
spend a lot of time. If you want to use what you read in this book, you need to
remember what you read. And for that, you've got to understand it. To get the most
from this book, or any book or learning experience, take responsibility for your
brain. Your brain on #us content.

The trick is to get your brain to see the new material you're learning as
Really Important. Crucial to your well-being, As important as a tiger.
Otherwise, you're in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way 1s about sheer repetition. You obviously know that you are able to learn

and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t fee/ important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, cspecially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording:

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning. ..

XXXi

how to use this

Here’s What WE Pid:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really zs worth a thousand words. And when text and pictures work
together, we embedded the text i the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain

1s tuned to pay attention to the biochemistry of emotions. That which causes you to fee/
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see

an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and asked questions that don’t always have a
straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, and so on, because, well, you’re a person. And
your brain pays more attention to people than it does to things.

XXXii

/@

Cut this out and stick it

e o Your vefvigerator.

o Slow down. The more you understand, the

less you have to memorize.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The

more deeply you force your brain to think, the better
chance you have of learning and remembering.

Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity w/ule learning can increase the learning;

Read the “There Are No Dumb Questions”
sections.

That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Make this the last thing you read before bed.

Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens g/ you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

Talk about it. Out loud.

Speaking activates a different part of the brain. If
you’re trying to understand something or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
Youw’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

o

7

the

Heres what YOU can do to bend
your brain into subwmission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
1s still better than feeling nothing at all.

Write a lot of code!

There’s only one way to learn to program in Python:
write a lot of code. And that’s what you’re going
to do throughout this book. Coding is a skill, and
the only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it

working before you move on to the next part of the
book.

xXxxXiii

how to use this

Read Me, 1 of 2

This 1s a learning experience, not a reference book. We deliberately stripped out everything that
might get in the way of learning whatever it is we’re working on at that point in the book. And
the first time through, you need to begin at the beginning, because the book makes assumptions
about what you’ve already seen and learned.

This book is designed to get you up to speed as quickly as possible.

As you need to know stuff; we teach it. So you won’t find long lists of technical material, no
tables of Python’s operators, nor its operator precedence rules. We don’t cover everything, but
we’ve worked really hard to cover the essential material as well as we can, so that you can get
Python into your brain quickly and have it stay there. The only assumption we make is that you
already know how to program in some other programming language.

This book targets Python 3

We use Release 3 of the Python programming language in this book, and we cover how to get
and install Python 3 in Appendix A. This book does not use Python 2.

We put Python to work for you right away.

We get you doing useful stuff in Chapter 1 and build from there. There’s no hanging around,
because we want you to be productive with Python right away.

The activities are NOT optional—you have to do the work.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some
of them are to help with memory, some are for understanding, and some will help you apply
what you've learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book 1s about learning, so you’ll see some of the same
concepts come up more than once.

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for the
two lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect all of
the examples to be robust, or even complete—they are written specifically for learning, and
aren’t always fully functional (although we’ve tried to ensure as much as possible that they are).

XXXiV

the

Read Me, 2 of 2

Yes, there’s more...

This second edition is NOT at all like the first.

This is an update to the first edition of Head First Python, which published late in 2010.
Although that book and this one share the same author, he’s now older and (hopefully)
wiser, and thus, decided to completely rewrite the first edition’s content for this edition.
So...everything is new: the order is different, the content has been updated, the examples
are better, and the stories are either gone or have been replaced. We kept the cover—
with minor amendments—as we figured we didn’t want to rock the boat too much. It’s
been a long six years...we hope you enjoy what we’ve come up with.

Where’s the code?

We’ve placed the code examples on the Web so you can copy and paste them as needed
(although we do recommend that you type in the code as you follow along). You’ll ind the
code at these locations:

http://bit.ly /head-first-python-2e

http://python.itcarlow.ie

XXXV

http://bit.ly/head-first-python-2e
http://python.itcarlow.ie

the intro

The Technical Review Team

Bill Lubanovic has been a developer and admin for forty years.
He’s also written for O’Reilly: chapters for two Linux security
books, co-authored a Linux admin book, and solo “Introducing
Python”. He lives by a frozen lake in the Sangre de Sasquatch
mountains of Minnesota with one lovely wife, two lovely children,
and three fur-laden cats.

Edward Yue Shung Wong has been hooked on coding since he
wrote his first line of Haskell in 2006. Currently he works on event
driven tradeprocessing in the heart of the City of London. He
enjoys sharing his passion for development with the London Java
Community and Software Craftsmanship Community. Away from Edward

the keyboard, find Edward in his element on a football pitch or \

gaming on YouTube (@arkangelofkaos).

Adrienne Lowe is a former personal chef from Atlanta turned
Python developer who shares stories, conference recaps, and recipes
at her cooking and coding blog Coding with Knives (http://
codingwithknives.com). She organizes PyLadiesATL and Django
Girls Atlanta and runs the weekly Django Girls “Your Django
Story” interview series for women in Python. Adrienne works as a
Support Engineer at Emma Inc., as Director of Advancement of
the Django Software Foundation, and is on the core team of Write
the Docs. She prefers a handwritten letter to email and has been
building out her stamp collection since childhood.

Monte Milanuk provided valuable feedback.

XXXVi intro

the

Acknowledgments and Thanks

My editor: This edition’s editor is Dawn Schanafelt, and this book
1s much, much better for Dawn’s involvement. Not only is Dawn a
great editor, but her eye for detail and the right way to express things
has greatly improved what’s written here. O’Reilly Media make a

habit of hiring bright, friendly, capable people, and Dawn is the very
personification of these attributes.

The O’Reilly Media team: This edition of Head First Python took four years to write (it’s a long story). It’s only
natural, then, that a lot of people from the O’Reilly Media team were involved. Courtney Nash talked me into doing
“a quick rewrite” in 2012, then was on hand as the project’s scope ballooned. Courtney was this edition’s first editor, and
was on hand when disaster struck and it looked like this book was doomed. As things slowly got back on track, Courtney
headed off to bigger and better things within O’Re:lly Media, handing over the editing reins in 2014 to the very busy
Meghan Blanchette, who watched (I'm guessing, with mounting horror) as delay piled upon delay, and this book
went on and off the tracks at regular intervals. Things were only just getting back to normal when Meghan went off
to pastures new, and Dawn took over as this book’s editor. That was one year ago, and the bulk of this book’s 12%4
chapters were written under Dawn’s ever-watchful eye. As I mentioned above, O’Reilly Media hires good people, and
Courtney and Meghan’s editing contributions and support are gratefully acknowledged. Elsewhere, thanks are due to
Maureen Spencer, Heather Scherer, Karen Shaner, and Chris Pappas for working away “behind the scenes.”
Thanks, also, to the invisible unsung heroes known as Production, who took my /nDesign chapters and turned them
into this finished product. They did a great job.

A shout-out to Bert Bates who, together with Kathy Sierra, created this series of books with their wonderful Head
First Java. Bert spent a lot of time working with me to ensure this edition was firmly pointed in the right direction.

Friends and colleagues: My thanks again to Nigel Whyte (Head of the Department of Computing at the Institute

of Technology, Carlow) for supporting my involvement in this rewrite. Many of my students had a lot of this material
thrust upon them as part of their studies, and I hope they get a chuckle out of seeing one (or more) of their classroom
examples on the printed page.

Thanks once again to David Griffiths (my partner-in-crime on Head First Programming) for telling me at one
particularly low point to stop agonizing over everything and just write the damned thing! It was perfect advice, and it’s
great to know that David, together with Dawn (his wife and Head First coauthor), is only ever an email away. Be sure to
check out David and Dawn’s great Head First books.

Family: My family (wife Deirdre, and children Joseph, Aaron, and Aideen) had to endure four years of ups-and-
downs, fits-and-starts, huffs-and-puffs, and a life-changing experience from which we all managed to come through with
our wits, thankfully, still intact. This book survived, I survived, and our family survived. I'm very thankful and love them
all, and I know I don’t need to say this, but will: I do this for you guys.

The without-whom list: My technical review team did an excellent job: check out their mini-profiles on the previous
page. I considered all of the feedback they gave me, fixed all the errors they found, and was always rather chuffed when
any of them took the time to tell me what a great job I was doing. I'm very grateful to them all.

XXXVii

o’reilly

0’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
Sa fa rl. training and reference platform for enterprise, government,

Books Online . o .
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, and Coourse Technology, among others.

For more information, please visit Attp://oreilly.com/safari.

XXXViii

1 the basics

*
+ Getting Started Quickly *

What's Python? A nonvenomous
snake? A late 1960s comedy troupe?
A programming language? Gosh! It's
all of these things!

Somebody's obviously spent
far too many days at sea...

Get going with Python programming as quickly as possible.

In this chapter, we introduce the basics of programming in Python, and we do this in

typical Head First style: by jumping right in. After just a few pages, you'll have run your
first sample program. By the end of the chapter, you'll not only be able to run the sample
program, but you'll understand its code too (and more besides). Along the way, you'll learn
about a few of the things that make Python the programming language it is. So, let’s not

waste any more time. Flip the page and let’s get going!

this is a new chapter

say hello—

Breaking with Tradition

Pick up almost any book on a programming language, and the first thing
you’ll see is the Hello World example.

I knew it—you're
starting with “Hello,
World!", aren't you?

No, we aren’t.

This is a Head First book, and we do things
differently round here. With other books,
there is a tradition to start by showing you
how to write the Hello World program in the
language under consideration. However,
with Python, what you end up with is a
single statement that invokes Python’s
built-in print function, which displays
the traditional “Hello, World!” message
on screen. It’s almost too exciting...and it
teaches you next to nothing.

So, no, we aren’t going to show you the Hello
Waorld program in Python, as there’s really
nothing to learn from it. We’re going to take
a different path...

Starting with a meatier example

Our plan for this chapter is to start with an example that’s somewhat larger
and, consequently, more useful than Hello World.

We’ll be right up front and tell you that the example we have is somewhat
contrived: it does do something, but may not be entirely useful in the long run.
That said, we’ve chosen it to provide a vehicle with which to cover a lot of
Python in as short a timespan as possible. And we promise by the time you’ve
worked through the first example program, you’ll know enough to write Hello
Waorld in Python without our help.

2

Jump Right In

If you haven’t already installed a version of Python 3 on your computer,

pause now and head on over to Appendix A for some step-by-step installation

instructions (it’ll only take a couple minutes, promise).

With the latest Python 3 installed, you’re ready to start programming
Python, and to help with this—for now—we’re going to use Python’s built-in
integrated development environment (IDE).

Pythown’s IPLE is all you need to get going

When you install Python 3 on your computer, you also get a very simple yet
usable IDE called IDLE. Although there are many different ways in which to

run Python code (and you’ll meet a lot of them throughout this book), IDLE
is all you need when starting out.

Start IDLE on your computer, then use the File... = New File... menu option to
open a new editing window. When we did this on our computer, we ended up
with two windows: one called the Python Shell and another called Untitled:

@ o Python 3.4.3 Shell

This window pops

up Liest. Think of

it as the “Liest

»
window.

J

basics

Type "copyright”,
>>>
e e

Untitled

Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
"credits" or "license()" for more information.

Starting IDLE, then
thoosing “File..— New
File.” vesults in two
windows avyeaving on
streen.

Ln:1|Col: O

you are here » 3

let’s get

Understanding IPLE's Windows

Both of these IDLE windows are important.

The first window, the Python Shell, is a REPL environment used to run
snippets of Python code, typically a single statement at a time. The more
you work with Python, the more you’ll come to love the Python Shell,
and you’ll be using it a lot as you progress through this book. For now;
though, we are more interested in the second window.

The second window, Untitled, is a text editing window that can be used
to write complete Python programs. It’s not the greatest editor in the
world (as that honor goes to <insert your favorite text editor’s name here>), but
IDLE’s editor is quite usable, and has a bunch of modern features built
right in, including color-syntax handling and the like.

As we are jumping right in, let’s go ahead and enter a small Python
program into this window. When you are done typing in the code below,
use the File...—Save... menu option to save your program under the name

e

Geek Bits —

What does REPL mean?

It's geek shorthand for “read-
eval-print-loop,” and describes an
interactive programming tool that
lets you experiment with snippets of
code to your heart’s desire. Find out
way more than you need to know by
visiting http://en.wikipedia.org/wiki/
Read-eval-print_loop.

odd.py.

Be sure to enter the code exactly as shown here:

[NON] odd.py - /Users/Paul/Desktop/_NewBook/ch01/odd.py (3.4.3)

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11,

21, 23, 25, 27, 29, 31,
Dort bouk 41, 43, 45, 47, 49, 51,
oy\, WOY‘Y\/a ow

13, 15, 17, 19,
33, 35, 37, 39,
53, 55, 57, 59]

what this code —2 right_this minute = datetime.today().minute

does for now- Just

Lype it into the if right_this _minute in odds:

editing window. print("This minute seems a little odd.")
Be sure to save it else:

as “odd-py’ before print("Not an odd minute.")

{,on{jnuing-

Ln: 15|Col: O

So...now what? If you’re anything like us, you can’t wait to run this code, right?
Let’s do this now. With your code in the edit window (as shown above), press the
F5 key on your keyboard. A number of things can happen...

4

http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Read-eval-print_loop

What Happens Next...

If your code ran without error, flip over to the next page, and keep going.

If you forgot to save your code before you tried to run it, IDLE complains, as
you have to save any new code to a file first. You’'ll see a message similar to

this one if you didn’t save your code:

)

Source Must Be Saved
OK to Save?

Cancel

Click the OK button, then provide a name for your file. We’ve chosen odd
as the name for our file, and we’ve added a . py extension (which is a Python

convention well worth adhering to):

Tags:

Where:

Save As: odd.py

1 ch01

~
v

Cancel

Save

If your code now runs (having been saved), flip over to the next page, and keep
going. If, however, you have a syntax error somewhere in your code, you’ll see

this message:

2y

invalid syntax

Click the OK button, then note where IDLE thinks the syntax error is: look
for the large red block in the edit window. Make sure your code matches ours
exactly, save your file again, and then press F5 to ask IDLE to execute your

code once more.

the basics

B\/ default, [DLE
WOh"‘: vun tode {:ha£
hasn't been saved.

—

<

You ave free to use
whatever name You
hkc ACOY‘ \IOU\Y' PY'OSY'GW\I
but it’s probably
best—if \/ou’\rc
‘(:o“owing along—-‘oo
stiek to the same

name as us.

ST

As You £an no doubt
tell, IDLE isn't great
at s‘l:a‘f:ing what the
syntax ervor is. But
tlick 0K, and a large
ved block indieates
wheve [DLE thinks
the problem is.

you are here » 5

pressing F5

Press F9 to Run Your Code

Pressing I'5 executes the code in the currently selected IDLE text-editing k—\
window—assuming, of course, that your code doesn’t contain a runtime error. From this poin :
If you have a runtime error, you’ll see a Traceback error message (in red). we'll vefer L G :m
Read the message, then return to the edit window to make sure the code you IDLE bextoodit e

entered is exactly the same as ours. Save your amended code, then press I'5 tiny

: . . window” SimFl as
again. When we pressed I'5, the Python Shell became the active window, and “the edit wi dow.”
here’s what we saw: window.

[JoN | Python 3.4.3 Shell

Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 23 2015, 02:52:03)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> RESTART

>>> : £ . s

This minute seems a little odd. Don 't worey i you ¢

>35> | ~— diffevent message: Rfad

on to learn why this is.
Ln: 7 |Col: 4

Depending on what time of day it 1s, you may have seen the Not an odd minute
message instead. Don’t worry if you did, as this program displays one or the N i b
other message depending on whether your computer’s current time contains Pressing F5 while in the
a minute value that’s an odd number (we did say this example was contrived, edit window uns your
didn’t we?). If you wait a minute, then click the edit window to select it, then tode, then d‘s\"a\ls the
press IS again, your code runs again. You’ll see the other message this time vesulting output in the
(assuming you waited the required minute). Feel free to run this code as often P\/H\on Shell.
as you like. Here is what we saw when we (very patiently) waited the required
minute:

[JoN | Python 3.4.3 Shell

Python 3.4.3 (v3.4.3:9b73f1lc3e601, Feb 23 2015, 02:52:03)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright"”, "credits" or "license()" for more information.

>>> RESTART

>>>

This minute seems a little odd.

>>> RESTART

>>>

Not an odd minute.

>>> |

Ln: 10|Col: 4

Let’s spend some time learning how this code runs.

basics

Code Runs Immediately

When IDLE asks Python to run the code in the edit window, Python starts at
the top of the file and begins executing code straightaway.

For those of you coming to Python from one of the C-like languages, note
that there is no notion of amain () function or method in Python. There’s
also no notion of the familiar edit-compile-link-run process. With Python,
you edit your code and save it, and run it immediately.

Hang on a second. You said "IDLE asks
Python fo run the code”...but isn't Python the
programming language and IDLE the IDE? If so,
what's actually doing the running here?!?

Oh, good catch. That is confusing.

Here’s what you need to know: “Python™ is the name given to the
programming language and “IDLE” is the name given to the built-in
Python IDE.

That said, when you install Python 3 on your computer, an interpreter
1s installed, too. This is the technology that runs your Python code. Rather
confusingly, this interpreter is also known by the name “Python.” By

right, everyone should use the more correct name when referring to this
technology, which is to call it “the Python interpreter.” But, alas, nobody
ever does.

Starting this very second, in this book, we’ll use the word “Python”

to refer to the language, and the word “interpreter” to refer to the
technology that runs your Python code. “IDLE” refers to the IDE, which
takes your Python code and runs it through the interpreter. It’s the
interpreter that does all the actual work here.

therejare no
Dumb Questions

Q; Is the Python interpreter something like the Java VM? Q: But, surely, compilation has to happen at some stage?
A: Yes and no. Yes, in that the interpreter runs your code. But A: Yes, it does, but the interpreter does not expose this process
no, in how it does it. In Python, there’s no real notion of your source to the Python programmer (you). All of the details are taken care of
code being compiled into an “executable.” Unlike the Java VM, the for you. All you see is your code running as IDLE does all the heavy
interpreter doesn’t run . class files, it just runs your code. lifting, interacting with the interpreter on your behalf. We’'ll talk more

about this process as this book progresses.

step by

Executing Code, One Statement at a Time

Here is the program code from page 4 again:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57, 59 1]

right this minute = datetime.today().minute

if right this minute in odds:
print ("This minute seems a little odd.")
else:

print ("Not an odd minute.")

Let’s be the Python interpreter

Let’s take some time to run through this code in much the same way that the Tl\ink 0{ m()c[ules
interpreter does, line by line, from the top of the file to the bottom.

as a collection of

The first line of code imports some preexisting functionality from Python’s

standard library, which is a large stock of software modules providing lots relate C[{unctiOH&
of prebuilt (and high-quality) reusable code.

In our code, we specifically request one submodule from the standard This is the
library’s datetime module. The fact that the submodule is also called ame of the
datetime is confusing, but that’s how this works. The datetime sbmodule.

submodule provides a mechanism to work out the time, as you'll see over the

next few pages.
from datetime import datetime 4/

A RCMCmbcr: the
This is 4 ; odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, intevpreter starks
€ name
° 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, ajcﬂ‘"wl’offhc

the standard !ibrary

i,C ahd WOV‘kS dowh

modu'c'boimPoVr'l: the 41, 43, 45, 47, 49, 51, 53, 55, 57, 53] toward ¢
he botto
veusable tode firom. e exetuting cac: lincm '
of Py‘l:hon tode 3s

; it goes.
[n this book, when we want You to pay ya\.'{ucf.lar 9
attention to a line of tode, we \'\ighllgh{: vt (\)us{:

8 like we did heve).

basics

Functions + Modules = The Standard Library

Python’s standard library is very ik, and provides a lot of reusable code.

Let’s look at another module, called os, which provides a platform-independent way
to interact with your underlying operating system (we’ll return to the datetime
module in a moment). Let’s concentrate on just one provided function, getcwd,
which—when invoked—returns your current working directory.

Here’s how you’d typically import, then invoke, this function within a Python program:

from os import getcwd

|m\70\'{: the Lunction then invoke as

feom its module.. where_ant = getovd)L — reauired.

A collection of related functions makes up a module, and there are lots of
modules in the standard library:

The funckionf

s part of a

module.

K—N

whith tomes as part of
fhe standard library:

B

getéwd

Functions are inside
modules inside the
standard library.

randorrT datetim:

Don’t worry 'abou{: what each of these modules does at this s{:agc.
We have a quick preview of some of Lthem over the Page, and will 9
see move of the vest later in this book.

digging

Up Close with the Standard 1 jbrary

The standard library is the jewel in Python’s crown, supplying reusable modules that help you with
everything from, for example, working with data, through manipulating ZIP archives, to sending emails,

to working with HI'ML. The standard library even includes a web server, as well as the popular SQLite
database technology. In this Up Close, we’ll present an overview of just a few of the most commonly used
modules in the standard library. To follow along, you can enter these examples as shown at your >>>
prompt (in IDLE). If you are currently looking at IDLE’s edit window, choose Run...= Python Shell from the
menu to access the >>> prompt.

Let’s start by learning a little about the system your interpreter is running on. Although Python prides
itself on being cross-platform, in that code written on one platform can be executed (generally unaltered)
on another, there are times when it’s important to know that you are running on, say, Mac OS X. The sys
module exists to help you learn more about your interpreter’s system. Here’s how to determine the identity
of your underlying operating system, by first importing the sys module, then accessing the platform
attribute:

. /—\ ’mpo\r{: the module You need, then aceess the attrib
207 lmport evs of interest. It looks like we are runnin ¢ e

« . n
>>> sys.platform k/ L 9 darwin)
'darwin' which is the Mae 0S X kernel name.

The sys module is a good example of a reusable module that primarily provides access to preset attributes
(such as plat form). As another example, here’s how to determine which version of Python is running,
which we pass to the print function to display on screen:

) information about
>>> print(sys.version) There's a lot O‘C w(:o m

.) H
3.4.3 (v3.4.3:9b73£lc3e601, Feb 23 2015, 02:52:03) «——— the Python vevsion we've vunning,
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] intluding that it's 343

The os module is a good example of a reusable module that primarily yields functionality, as well as
providing a system-independent way for your Python code to interact with the underlying operating system,
regardless of exactly which operating system that 1s.

For example, here’s how to work out the name of the folder your code is operating within using the
getcwd function. As with any module, you begin by importing the module before invoking the function:
>>> import os

>>> os.getcwd()
' /Users/HeadFirst/CodeExamples'

«——— Import the module, then invoke the
L\uhf.{:ionali{\/ You need.

You can access your system’s environment variables, as a whole (using the environ attribute) or The “envivon”
individually (using the getenv function): attribute
eontains lots

>>> os.environ
'environ ({'XPC_FLAGS': '0x0', 'HOME': '/Users/HeadFirst',6 'TMPDIR': '/var/ da{:a
folders/18/t93gmhc546b7b2cngfhz10100000gn/T/', ... 'PYTHONPATH': '/Applications/ @J
Python 3.4/IDLE.app/Contents/Resources', ... 'SHELL': '/bin/bash', 'USER':

'HeadFirst' !

>>> os.get;x)w('"HOME ') You [fah access a SFCCi‘FiCall‘/ named

' /Users/HeadFirst' f——o0no—— Q‘H‘,Ylbu{‘,c (‘FV'O"\ the data tontained in

“envivron”) using “getenv”.

10

the basics

Up Close with the Standard Library, Contyinued

Working with dates (and times) comes up a lot, and the standard library provides the datetime module to
help when you’re working with this type of data. The date . today function provides today’s date:

>>> import datetime

>>> d?tetime .date. today () K_\ TBday’s da‘f:c

datetime.date (2015, 5, 31)
That’s certainly a strange way to display today’s date, though, isn’t it? You can access the day, month, and
year values separately by appending an attribute access onto the call to date.today:

>>> datetime.date.today () .day

31

>>> datetime.date.today () .month The Lom?oncw{: Far{"s °‘F
5 < today’s date

>>> datetime.date.today() .year

2015

You can also invoke the date.isoformat function and pass in today’s date to display a much more user-
friendly version of today’s date, which is converted to a string by isoformat:

! strin
>>> datetime.date.isoformat (datetime.date.today()) Q/— Toda\/ 3 da&c as d {: 9
'2015-05-31"

And then there’s time, which none of us seem to have enough of. Can the standard library tell us what time it
1s? Yes. After importing the time module, call the strftime function and specify how you want the time
displayed. In this case, we are interested in the current time’s hour (%H) and minute ($M) values in 24-hour
format:

>>> import time
>>> time.strftime ("%H:%M")

123:55" Good heavens! [s that the time?

How about working out the day of the week, and whether or not it’s before noon? Using the $A $p
specification with strftime does just that:

>>> time.strftime ("$A %p") We've now worked out that it’s five minutes to midnight

‘Sunday BM'eC___ " on Sunday evening...time for bed, perhaps?

As a final example of the type of reusable functionality the standard library provides, imagine you have some
HTML that you are worried might contain some potentially dangerous <script> tags. Rather than
parsing the HTML to detect and remove the tags, why not encode all those troublesome angle brackets
using the escape function from the html module? Or maybe you have some encoded HTML that you’d
like to return to its original form? The unescape function can do that. Here are examples of both:

>>> import html

. . . ol i
>>> html.escape ("This HTML fragment contains a <script>script</script> tag.") fohv"bha
'This HTML fragment contains a <scripté>scripté</script> tag.' «— and
>>> html.unescape ("I ♥ Python's <standard library>.") -From H'TML

"I v Python's <standard library>."

entoded text

you are here » 11

everything you

Batteries Included

tberelgre no

— Dumb Questions ——

Q: How am | supposed to work out what any particular
module from the standard library does?

A: .The Python documentation has all the answers on
the standard library. Here's the kicking-off point: htfps.//docs.
python.org/3/library/index.html.

12

T guess this is what
people mean by the term
"Python comes with batteries
included,” right?

Yes. That’s what they mean.

As the standard library is so rich, the thinking is all
you need to be immediately productive with
the language is to have Python installed.

Unlike Christmas morning, when you open
your new toy only to discover that it doesn’t
come with batteries, Python doesn’t disappoint;
it comes with everything you need to get going.
And it’s not just the modules in the standard
library that this thinking applies to: don’t forget
the inclusion of IDLE, which provides a small,
yet usable, IDE right out of the box.

All you have to do is code.

Geek Bits

The standard library isn’t the only place you'll

find excellent importable modules to use with
your code. The Python community also supports a
thriving collection of third-party modules, some of
which we'll explore later in this book. If you want a
preview, check out the community-run repository:
http://pypi.python.org.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
http://pypi.python.org/

Pata Structures Come Built-in

As well as coming with a top-notch standard library, Python also has some
powerful built-in data structures. One of these is the list, which can be
thought of as a very powerful array. Like arrays in many other languages, lists
in Python are enclosed within square brackets ([]).

The next three lines of code in our program (shown below) assign a lteral

list of odd numbers to a variable called odds. In this code, odds is a list of
integers, but lists in Python can contain any data of any type, and you can even
mix the types of data in a list (if that’s what you’re into). Note how the odds
list extends over three lines, despite being a single statement. This is OK, as
the interpreter won’t decide a single statement has come to an end until it
finds the closing bracket (1) that matches the opening one ([). Typically, the
end of the line marks the end of a statement in Python, but there
can be exceptions to this general rule, and multiline lists are just one of them
(we’ll meet the others later).

basics

Like arrays, lists
can hold data of

any type.

from datetime import datetime

This is the list of

This is @ new /’odds =[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, gdd numbers, entlosed
vaviable, called —] 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, <—in square brackets.
“odds”, whith is 41, 43, 45, 47, 49, 51, 53, 55, 57, 59] This single statement

assigncd alist °(:
odd numbevs.

extends over three
lines, which is oK.

There are lots of things that can be done with lists, but we’re going to defer
any further discussion until a later chapter. All you need to know now is that
this list now exusts, has been assigned to the odds variable (thanks to the use of
the assignment operator, =), and confains the numbers shown.

Python variables are dynamically assigned

Before getting to the next line of code, perhaps a few words are needed about
variables, especially if you are one of those programmers who might be used
to predeclaring variables with type information before using them (as is the
case 1n statically typed programming languages).

In Python, variables pop into existence the first time you use them, and their
type does not need to be predeclared. Python variables take their type
information from the type of the object they’re assigned. In our program, the
odds variable is assigned a list of numbers, so odds is a list in this case.

Let’s look at another variable assignment statement. As luck would have it,
this just so happens to also be the next line of code in our program.

Pytlaon comes with all
the usual operators,
including <, >, <=, >=,
==, !=, as well as the
= assignment operator.

13

assignment is everywhere

Invoking Methods Obtains Results

The third line of code in our program is another assignment statement.

Unlike the last one, this one doesn’t assign a data structure to a variable, but instead assigns
the result of a method call to another new variable, called right this minute. Take
another look at the third line of code:

from datetime import datetime

Heve's another

vaviable being odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
treated and 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
assigncdava\“c- 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

K—} right this minute = datetime.today () .minute

A\

if right this minute in odds: | This ¢all genevates
print ("This minute seems a little odd.") 3 value to assign to
the vaviable.
else:

print ("Not an odd minute.")

Invoking built-in module functionality

The third line of code invokes a method called today that comes with the datetime

submodule, which is uself part of the datetime module (we did say this naming strategy was

a little confusing). You can tell today is being invoked due to the standard postfix parentheses: 9

0. You'll see

When today is invoked, it returns a “time object” (of type datetime.datetime), which more 0{ tl‘e
contains many pieces of information about the current time. These are the current time’s

attributes, which you can access via the customary dot-notation syntax. In this program, (Iot—notation
we are interested in the minute attribute, which we can access by appending .minute to the

method invocation, as shown above. The resulting value is then assigned to the right syntax latel'
this minute variable. You can think of this line of code as saying: create an object that represents . .

today’s time, then extract the value of the minute attribute before assigning it to a variable. It 1s tempting to split m tllls 13001(0

this single line of code into two lines to make it “casier to understand,” as follows:

Fivst, determine the —> time now = datetime.today ()

: .then extr.
t,wvcn& time.... right this minute = time now.minute €——— . t act the
— — — | mmu{c value.

You can do this (if you like), but most Python programmers prefer not to create the temporary
variable (Eime now in this example) unless it’s needed at some point later in the program.

14 Chapter 1

basics

Peciding When to Run Blocks of Code

At this stage we have a list of numbers called odds. We also have a minute value
called right this minute. In order to work out whether the current minute
value stored in right this minute is an odd number, we need some way of
determining if it is in the odds list. But how do we do this?

It turns out that Python makes this type of thing very straightforward. As well

as including all the usual comparison operators that you’d expect to find in any
programming language (such as >, <, >=, <=, and so on), Python comes with a few
“super” operators of its own, one of which is in.

The in operator checks if one thing is inside another. Take a look at the next line of
code in our program, which uses the in operator to check whether right this
minute is inside the odds list:

right this minute = datetime.today().minute

Corm N oty
o S . | is powerful. [t can
if right this minute in odds: determi

Wis 6" statement /§ etermine whether
Zilllsc\:alua‘cc to either one thing is inside

)
« Truc" o “False”. NN another.

print ("This minute seems a little odd.")

The in operator returns either True or False. As you’d expect, if the value in
right this minuteisin odds, the if statement evaluates to True, and the
block of code associated with the if statement executes.

Blocks in Python are easy to spot, as they are always indented.

In our program there are two blocks, which each contain a single call to the print
function. This function can display messages on screen (and we’ll see lots of uses of it
throughout this book). When you enter this program code into the edit window, you
may have noticed that IDLE helps keep you straight by indenting automatically. This
1s very useful, but do be sure to check that IDLE’s indentation is what you want:

Heve is one right this minute = datetime.today() .minute The “Pkih{:” ‘Funcfion
block of code. t",a)’s d message on
Note: the tode if right this minute in odds: standard output (e,

L) our streen).
s mdcv\{xd \% print ("This minute seems a little odd.") Y "

else: &_/
print ("Not an odd minute.") <\

Did you notice that there are no curly braces here?

Pnd heve is another blotk of ¢tode.
Note: it's indented, 400 .

no curly

What Happened to My Curly Braces?

If you are used to a programming language that uses curly braces ({ and })
to delimit blocks of code, encountering blocks in Python for the first time can
be disorienting, as Python doesn’t use curly braces for this purpose. Python

uses indentation to demarcate a block of code, which Python programmers c[{ { .
prefer to call suite as opposed to block (just to mix things up a little). Instea o1 rexerr lng
It’s pot that curly braces don’t have a use in Pyth01.1. The?/ d'o., but—as we’ll 10 a CO(Ie "1)1001(’”

see in Chapter 3—curly braces have more to do with delimiting data than

they have to do with delimiting suites (i.e., blocks) of code. py‘tlton Programmers

Suites within any Python program are easy to spot, as they are always
indented. This helps your brain quickly identify suites when reading code.
The other visual clue for you to look out for is the colon character (:), which

use the word "suite.”

. . JOUTO 00s O or , Both names are used
1s used to introduce a suite that’s associated with any of Python’s control
statements (such as 1 f, else, for, and the like). You'll see lots of examples il'l ractice Lut the

9

of this usage as you progress through this book.

pytlton docs prefer
A colon introduces an indented suite of code "suite.”

The colon (:) is important, in that it introduces a new suite of code that must
be indented to the right. If you forget to indent your code after a colon, the
interpreter raises an error.

Not only does the 1 £ statement in our example have a colon, the else has
one, too. Here’s all the code again:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right this minute = datetime.today () .minute

if right this minute in odds: M\chlonz l;\{:\rofu(,c
indented suites.

print ("This minute seems a little odd.")

else: <—

print ("Not an odd minute.")

We’re nearly done. There’s just one final statement to discuss.

16

the basics

What “else” Can You Have with “if”?

We are nearly done with the code for our example program, in that there is
only one line of code left to discuss. It is not a very big line of code, but it’s

an important one: the else statement that identifies the block of code that
executes when the matching if statement returns a False value.

Take a closer look at the el se part from our program code, which we need
to unindent to align with the 1 £ part of this statement:

if right this minute in odds:

print ("This minute seems a little odd.")
See the tolond —2| else:
/R print ("Not an odd minute.™)

Did you SYO{Z
{haﬁ\lﬂr\c “else” is —J

W\'lndcvd',cd to 3‘35"
with the ‘"2

Itisa very common
sli]o-up for pytllon

newhies to forget

T guess if there's an “else”,
there must also be an “else if",
or does Python spell it “elseif"?

the colon when
first writing code.

Neither. Python spells it elif.

If you have a number of conditions that you need to
check as part of an 1if statement, Python provides
elif aswell as else. You can have as many elif
parts (each with its own suite) as needed.

Here’s a small example that assumes a variable
called today is previously assigned a string
representing whatever today is:

if today == 'Saturday': Thyee individual
print ('Party!!") suites: one for
elif today == 'Sunday': <« the “if”, another
print ('Recover."') for the “c'i‘F",
else: . ' ' and the final
print ('Work, work, work.') cateh—sll 1(-0'_
the “else”.

you are here » 17

indent like

Suvites Can Contain Embedded Suites

Any suite can contain any number of embedded suites, which also have to be
indented. When Python programmers talk about embedded suites, they tend
to talk about levels of indentation.

The initial level of indentation for any program is generally referred to as the
Jurst or (as is so common when it comes to counting with many programming
languages) indentation level zero. Subsequent levels are referred to as the

second, third, fourth, and so on (or level one, level two, level three, and so on).

Here’s a variation on the today example code from the last page. Note how
an embedded if/else has been added to the if statement that executes
when today is set to 'Sunday'. We’re also assuming another variable called
condition exists and is set to a value that expresses how you’re currently

feeling. We’ve indicated where each of the suites is, as well as at which level of

indentation it appears:

1
1
|
1
I
|
1
|
|

This single line of
tode is 3 suite.

: | ;
if today == 'saturdau
:priqt('Party!’')

elif today == 'Sunday':
I .
if gondition == 'Headache': Thesc single
/_,_,9 : 'print ('Recover, then rest.') 2“‘5b°‘i h¢°dc
! . re bo
These four : :elsé . suites.
I £ code I . print('Rest.')
ines o X
are a suite :elsel: 'I
: print ('Work, work, work.') 4\
. 1 1
: : | This single line of tode is
: 3 suite.
Indentation /& [ndentation
level zero Indentation level two
level one

It is important to note that code at the same level of indentation is only
related to other code at the same level of indentation if all the code appears
within the same suite. Otherwise, they are in separate suites, and it does

not matter that they share a level of indentation. The key point is that
indentation is used to demarcate suites of code in Python.

18

What We Already Know

With the final few lines of code discussed, let’s pause to review what

the odd. py program has told us about Python:

basics

%BU[[ET POINTS

Python comes with a built-in IDE called IDLE, which
lets you create, edit, and run your Python code—all
you need to do is type in your code, save it, and then
press F5.

= |DLE interacts with the Python interpreter, which
automates the compile-link-run process for you. This
lets you concentrate on writing your code.

= The interpreter runs your code (stored in a file) from
top to bottom, one line at a time. There is no notion of
amain () function/method in Python.

= Python comes with a powerful standard library, which
provides access to lots of reusable modules (of which
datetime is just one example).

= There is a collection of standard data structures
available to you when you're writing Python
programs. The list is one of them, and is very similar
in notion to an array.

The type of a variable does not need to be declared.

When you assign a value to a variable in Python, it

dynamically takes on the type of the data it refers to.

You make decisions with the i f/eliflelse
statement. The i f, e11if, and e1lse keywords
precede blocks of code, which are known in the
Python world as “suites.”

It is easy to spot suites of code, as they are always
indented. Indentation is the only code grouping
mechanism provided by Python.

In addition to indentation, suites of code are also
preceded by a colon (:). This is a syntactical
requirement of the language.

That's a long list
for such a short program!
So...what's the plan for the
rest of this chapter?

Let’s extend this program to do more.

It’s true that we needed more lines to describe what this short
program does than we actually needed to write the code. But
this 1s one of the great strengths of Python: you can get a lot
done with a_few lines of code.

Review the list above once more, and then turn the page to
make a start on seeing what our program’s extensions will be.

19

now

Extending Qur Program to Do More

Let’s extend our program in order to learn a bit more Python.

At the moment, the program runs once, then terminates. Imagine that we

want this program to execute more than once; let’s say five times. Specifically,

let’s execute the “minute checking code” and the 1 f/else statement five

times, pausing for a random number of seconds between each message

display (just to keep things interesting). When the program terminates, five

messages should be on screen, as opposed to one.

Here’s the code again, with the code we want to run multiple times circled:

from datetime import datetime

Let's tweak

Lhe program o
vun this tode 3
numbcr 0‘(: Limes.

S if right this minute in odds:

else:

print ("Not an odd minute.

odds = [1, 3, 5, 7, 9, 11, 13,
21, 23, 25, 27, 29, 31, 33,
41, 43, 45, 47, 49, 51, 53,

15,
35,
55,

17,
37,
57,

right this minute = datetime.today().minute

print ("This minute seems a little odd.")

19,
39,
59]

What we need to do:

o Loop over the encircled code.

A loop lets us iterate over any suite, and Python provides a number of ways to do just that. In this

case (and without getting into why), we’ll use Python’s for loop to iterate.

e Pause execution.

Python’s standard time module provides a function called s1eep that can pause execution for an

indicated number of seconds.

e Generate a random number.

Happily, another Python module, random, provides a function called randint that we can use
to generate a random number. Let’s use randint to generate a number between 1 and 60, then

use that number to pause the execution of our program on each iteration.

We now know what we want to do. But is there a

preferred way of going about making these changes?

20

basics

What’s the Best Approach to Solving
This Problem?

You know what you need to do: put
your head down, read the docs, and
work out the Python code you need
to solve this problem. When you've
done this, you're ready to change
your program as needed...

That approach works, but I'm more
of an experimenter myself. I like to
try out small snippets of code before
I commit to making changes to my
working program. I'm happy to read
the docs, but like to experiment too...

Bob

Lau\ra

Both approaches work with Python

You can follow both of these approaches when working with Python, but most
Python programmers favor experimentation when trying to work out what
code they need for a particular situation.

Experimenting at

Don’t get us wrong: we are not suggesting that Bob’s approach is wrong and tlle >O> PrOmPt
Laura’s is right. It’s just that Python programmers have both options available
to them, and the Python Shell (which we met briefly at the start of this llelps you wor 1(out

chapter) makes experimentation a natural choice for Python programmers.

the code you need.

Let’s determine the code we need in order to extend our program, by
experimenting at the >>> prompt.

21

shell

Returning to the Python Shell

Here’s how the Python Shell looked the last time we interacted with it (yours might
look a little different, as your messages may have appeared in an alternate order):

L @ Python 3.4.3 Shell

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> RESTART
>>>
This minute seems a little odd.
>>> RESTART
>>>
Not an odd minute.
>>> |
Ln: 10|Col: 4
The Python Shell (or just “shell” for short) has displayed our program’s messages, but
it can do so much more than this. The >>> prompt allows you to enter any Python
code statement and have it execute immediately. If the statement produces output, the
shell displays it. If the statement results in a value, the shell displays the calculated
value. If, however, you create a new variable and assign it a value, you need to enter
the variable’s name at the >>> prompt to see what value it contains.
Check out the example interactions, shown below. It is even better if you follow along
and try out these examples at your shell. Just be sure to press the Enter key to terminate
each program statement, which also tells the shell to execute it now:
eoe Python 3.4.3 Shell
Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits"” or "license()" for more information.
>>> RESTART
>>>
This minute seems a little odd.
>>> RESTART
>>>
Not an odd minute.
>>> e — Th; shell displa\/s a message on streen as a vesult of +this
. . . _ ,
;:ilgr;:;!(Hello Mum!') tode statement executing (don't Forgcw’: to press Enter).
::: 21+21 £ You ?crﬁorm a taleulation, the shell displays the
42 < vesulting value (after you press Enter).
S>> ultimate_answer = 21+21 Pssiaping 3 value to a variable does not display the
>>> ultimate_answer } vaviable’s value. You have to specikically ask the
42 shell to do so.
>>> |

Ln: 20|Col: 4

22 Chapter 1

basics

Experimenting at the Shell

Now that you know you can type a single Python statement into the >>> prompt
and have it execute immediately, you can start to work out the code you need to
extend your program.

Here’s what you need your new code to do:

I:l Loop a specified number of times. We’ve already decided to use
Python’s for loop here.

I:l Pause the program for a specified number of seconds. The sleep
function from the standard library’s t ime module can do this.

I:l Generate a random number between two provided values. The
randint function from the random module will do the trick.

Rather than continuing to show you complete IDLE screenshots, we’re only
going to show you the >>> prompt and any displayed output. Specifically, from
this point onward, you’ll see something like the following instead of the earlier
screenshots:

The single code statement, which
You need to type in (followed by
Q//_ a press of the Enter key)

>>> print('Hello Mum!')
Hello Mum!
—_—

The shell prompt

The ou{:\?u{: rcsul*{:ing Lrom exetuting
the single code statement, which is
shown in blue in your shell

Opver the next few pages, we’re going to experiment to figure out how to add

the three features listed above. We'll play with code at the >>> prompt until we
determine exactly the statements we need to add to our program. Leave the odd.
py code as is for now, then make sure the shell window is active by selecting it.
The cursor should be blinking away to the right of the >>> | waiting for you to
type some code.

Flip the page when you’re ready. Let the experiments begin.

23

repeat

Iterating Over a Sequence of Objects

We said earlier that we were going to employ Python’s for loop here. The
for loop is perfect for controlling looping when you know ahead of time how
many iterations you need. (When you don’t know, we recommend the while
loop, but we’ll save discussing the details of this alternate looping construct Use "{or” Wlleﬂ
until we actually need it). At this stage, all we need is for, so let’s see it in
action at the >>> prompt.

loo]oing a known

We present three typical uses of for. Let’s see which one best fits our needs.

number of times.

Usage example 1. This for loop, below, takes a list of numbers and
iterates once for each number in the list, displaying the current number on
screen. As it does so, the for loop assigns each number in turn to a loop
weration variable, which is given the name i in this code.

As this code 1s more than a single line, the shell indents automatically for you
when you press Enter after the colon. To signal to the shell that you are done

entering code, press Enter twice at the end of the loop’s suite: itevation variable in

We used 7" as the loop

<, this example, but we could've called it just
>>> for i in [1, 2, 3]: sbout anykhing. Having said that,))
ey . W are intredibly popular among mos
int (i and ‘K’ ave int Y pop
prant(d) programmers in 4his situation.
: \' As this is 3 sui
2 TW!CE :ﬁi::'i" You need to press the Enter key

YPing in this eode i .
3 the statement and ?cc " c;;{;m order to terminate

Note the indentation and colon. Like if statements, the code associated with a
for statement needs to be indented.

Usage example 2. This for loop, below, iterates over a string, with

each character in the string being processed during each iteration. This

works because a string in Python is a sequence. A sequence is an ordered
collection of objects (and we’ll see lots of examples of sequences in this book),

A sequence 1S an
ordered collection

and every sequence in Python can be iterated over by the interpreter. o { Ol)jects.
>>> for ch in "Hi ! " .

print (ch) |

P\/‘l:\'\on is smart enough to work out that ;chus

H string should be iterated over one—tharatter

i at 3 Lime (and that's why we used “th’ as
) the loop vaviable name heve).

!
Nowhere did you have to tell the for loop how big the string is. Python is smart

enough to work out when the string ends, and arranges to terminate (i.e., end)
the for loop on your behalf when it exhausts all the objects in the sequence.

24

the basics

Iterating a Specific Number of Times

In addition to using for to iterate over a sequence, you can be more exact
and specify a number of iterations, thanks to the built-in function called
range.

Let’s look at another usage example that showcases using range.
Usage example 3. In its most basic form, range accepts a single integer
argument that dictates how many times the for loop runs (we’ll see other

uses of range later in this book). In this loop, we use range to generate a
list of numbers that are assigned one at a time to the num variable:

>>> for num in range (5):
print ('Head First Rocks!')

Head First Rocks!

Head First Rocks! We BSIfed for a vange of five numbevs,
Head First Rocks! <&<—— sowe iterated five times, which vesults
Head First Rocks! 'h TIve messages. Remember: press Enter

Head First Rocks! twice o run code that has a suite.

The for loop didn’t use the num loop iteration variable anywhere in the
loop’s suite. This did not raise an error, which is OK as it is up to you (the
programmer) to decide whether or not num needs to be processed further in
the suite. In this case, doing nothing with num is fine.

It looks like our “for"
loop experiments are about
to pay off. Are we done with
the first task?

Indeed we are. Task #1 is complete.

The three usage examples show that Python’s for loop is
what we need to use here, so let’s take the technique shown
in Usage example 3 and use it to iterate a specified number
of times using a for loop.

you are here » 25

y
4

I

make that

Applying the Qutcome of Task #1

to Qur Code

Here’s how our code looked in IDLE’s edit window before we worked on Task #1:

[NOX] odd.py - /Users/paul/Desktop/_NewBook/ch01/odd.py (3.5.1)

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11
21, 23, 25, 27, 29, 31
41, 43, 45, 47, 49, 51

right this minute = datetime.

if right_this minute in odds:
print ("This minute seems
else:
print ("Not an odd minute.

, 13, 15, 17, 19,
, 33, 35, 37, 39,
, 53, 55, 57, 59]

today () .minute

a little odd.") & —

")

Ln: 14 Col: 0

You now know that you can use a for loop to repeat the five
bottom of this program five times. The five lines will need to

lines of code at the
be indented under the

for loop, as they are going to form the loop’s suite. Specifically, each line of code

needs to be indented once. However, don’t be tempted to perform this action on each

individual line. Instead, let IDLE indent the entire suite for you i one go.

Begin by using your mouse to select the lines of code you want to indent:

[NON] odd.py - /Users/paul/Desktop/_NewBook/
from datetime import datetime
odds = [1, 3, 5, 7, 9, 11,

21, 23, 25, 27, 29, 31,
41, 43, 45, 47, 49, 51,

ch01/odd.py (3.5.1)

13, 15, 17, 19,
33, 35, 37, 39,
53, 55, 57, 59]

right_this minute = datetime.today () .minute

if right this minute in odds:
print ("This minute seems a
else:
print("Not an odd minute.")

little odd.")

Ln: 14 Col: 0

26 ter 1

—

This is the
tode we

want to
vepeat.

Use \low mouse

4o seleet the

lines o(" tode
ow wan{:

indent.

P

basics

Indent Suites with Format...Indent Region

With the five lines of code selected, choose Indent Region from the Format menu in
IDLE’s edit window. The entire suite moves to the right by one indentation level:

[NON] *odd.py - /Users/paul/Desktop/_NewBook/ch01/odd.py (3.5.1)*

from datetime import datetime
The Indent Region

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, o?{joy\ QY‘OVI\ {',\'\C
21, 23, 25, 27, 29, 31, 33, 35, 37, 39, Format menu
41, 43, 45, 47, 49, 51, 53, 55, 57, 59] ndents all of the

selected lines of

right this minute = datetime.today () .minute tode in one 90.

if right this minute in odds:

print ("This minute seems a little odd.")
else:

print ("Not an odd minute.")

Ln: 14 Col: 0

Note that IDLE also has a Dedent Region menu option, which unindents suites, and
that both the Indent and Dedent menu commands have keyboard shortcuts, which differ
slightly based on the operating system you are running. Take the time to learn the
keyboard shortcuts that your system uses now (as you’ll use them all the time). With the
suite indented, it’s time to add the for loop:

[NON J odd.py - /Users/paul/Desktop/_NewBook/ch01/odd.py (3.5.1)
from datetime import datetime
Add the odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

Lor” 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
loop line 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

\—> for i in range(5):

right this minute = datetime.today () .minute

if right_ this minute in odds:

The “for” print ("This minute seems a little odd.")
loop's suite else:
is properly print ("Not an odd minute.")
indented. |
Ln: 15 Col: 0

you are he 27

feeling

Arranging to Pause Execution

Let’s remind ourselves of what we need this code to do:

|zr Loop a specified number of times.
I:l Pause the program for a specified number of seconds.
|:| Generate a random number between two provided values.

We’re now ready to return to the shell and try out some more code to help
with the second task: pause the program for a specified number of seconds.

However, before we do that, recall the opening line of our program, which
imported a specifically named function from a specifically named module:

from datetime import datetime

~ This usage of “.'"'POV{:”

brings in ":hc named

This is one way to import a function into your program. Another equally unction to Your program.
common technique is to import a module wethout being specific about the You can then invoke it
function you want to use. Let’s use this second technique here, as it will without using the dot-
appear in many Python programs you’ll come across. notation syntax.

As mentioned earlier in this chapter, the s1leep function can pause execution
for a specified number of seconds, and is provided by the standard library’s
time module. Let’s import the module first, without mentioning sleep just

yet:

>>> import time &——This Lells the s\nc})\ +o ‘
>>> im\?o\r{: the “time module.

When the import statement is used as it is with the t ime module above,

you get access to the facilities provided by the module without anything

expressly named being imported into your program’s code. To access a

function provided by a module imported in this way, use the dot-notation

syntax to name it, as shown here: This is the number of

/\ \/_ setonds to SICCP for.
Name the module >>> time.sleep (5)
fiest (before >>>
the vcv\od). Speci "\‘I the funcion you want

4o invoke (after the peviod):

Note that when you invoke s1leep in this way, the shell pauses for five
seconds before the >>> prompt reappears. Go ahead, and try it now.

28

Importation Confusion

Q: Is there a correct way to use import?

Dum

basics

Hang on a second...Python supports two
importation mechanisms? Doesn't that get
kind of confusing?

That’s a great question.

Just to be clear, there aren’t fwo importation mechanisms in
Python, as there is only one import statement. However, the
import statement can be used i two ways.

The first, which we initially saw in our example program,
imports a named function into our program’s namespace,
which then allows us to invoke the function as necessary without
having to &k the function back to the imported module. (The
notion of a namespace is important in Python, as it defines the
context within which your code runs. That said, we’re going to
wait until a later chapter to explore namespaces in detail).

In our example program, we use the first importation technique,
then invoke the datetime function as datetime (), nof as
datetime.datetime ().

The second way to use import is to just import the module, as
we did when experimenting with the t ime module. When we
import this way, we have to use the dot-notation syntax to access
the module’s functionality, as we did with time.sleep ().

therejare no
b Questions

A: It can often come down to personal preference, as some programmers like to be very specific, while others don’t. However, there is a
situation that occurs when two modules (we’'ll call them A and B) have a function of the same name, which we'll call F'. If you put from A
import Fand from B import F inyourcode, how is Python to know which F to invoke when you call E' () ? The only way you
can be sure is to use the nonspecific import statement (thatis, put import Aand import B inyour code), then invoke the specific
F you want using either A. F () orB.F () as needed. Doing so negates any confusion.

29

every now

Generating Randowm Integers with Python

Although it is tempting to add import time to the top of our program, then
call time.sleep (5) inthe for loop’s suite, we aren’t going to do this right
now. We aren’t done with our experimentations. Pausing for five seconds isn’t
enough; we need to be able to pause for a random amount of time. With that in
mind, let’s remind ourselves of what we’ve done, and what remains:

E/ Loop a specified number of times.
M Pause the program for a specified number of seconds.

I:l Generate a random number between two provided values.

Once we have this last task completed, we can get back to confidently changing
our program to incorporate all that we’ve learned from our experimentations.
But we’re not there yet—let’s look at the last task, which is to generate a random
number.

As with sleeping, the standard library can help here, as it includes a module called
random. With just this piece of information to guide us, let’s experiment at the
shell:

>>> import random IJse'\{h”to
>>>
(Iuery an
Now what? We could look at the Python docs or consult a Python reference .
book...but that involves taking our attention away from the shell, even though it 0]eCt°
might only take a few moments. As it happens, the shell provides some additional
functions that can help here. These functions aren’t meant to be used within
your program code; they are designed for use at the >>> prompt. The first is
called dir, and it displays all the attributes associated with anything in Python, Buried in the middle of this

including modules: |°'*5 list is the name of Lhe
unttion we need.

>>> dir (random)
['BPF', 'LOG4', 'NV_MAGICCONST',)'RECIP BPF',
'Random’, e !randint' 'random', 'randrange',
'sample', 'seed',6K 'setstate', 'shuffle', 'triangular',
'uniform', 'vonmisesvariate', 'weibullvariate']

This list has a lot in it. Of interest is the randint () function. To learn more ’K_ This is an abﬁdgcd

about randint, let’s ask the shell for some help. list. What you'll see
On Your streen is much
longer.

30

basics

Asking the Interpreter for Help

Once you know the name of something, you can ask the shell for help. When

you do, the shell displays the section from the Python docs related to the name (9
you’re interested in. Use '119[})

Let’s see this mechanism in action at the >>> prompt by asking for help with to reac[tl‘e

the randint function from the random module:
Pyt]uon docs.
/31 >>> help (random.randint)
Help on method randint in module random:
Ask for help at

the >>> prompt-- randint (a, b) method of random.Random instance

Return random integer in range [a, b], including
both end points.

x

Geek Bits

~-and see the assotiated
dotumentation vight in the shell.

You can recall the last
command(s) typed into
the IDLE >>> prompt
by typing Alt-P when

. . . using Linux or Windows.
>
A few final experiments at the >>> prompt show the randint function in On Mac 0S X, use Ctrl-P.

A quick read of the displayed docs for the randint function confirms what
we need to know: if we provide two integers to randint, we get back a
random integer from the resulting inclusive range.

action: Think of the “P" as
>>> random.randint(1l,60) meaning “previous.”
27
>>> random.randint(1,60) (< I you'ee £ ollowing along, what you'll
34 see on Your streen will vary, as the

integers veturned by “vandint” ave

>>> random.randint (1, 60) generated van domly.

46
L— impor-ted the “random’ module using ,:‘im‘?or{, vandom’, You
?:::u{: \\r'/::\c‘mr:: to chp'n(the call to “candint” with the module name

and 3 dot. So it's “random-randin{()" and not “\randiw{:()".

With this, you are now in a position to place a satisfying check mark against
the last of our tasks, as you now know enough to generate a random number
between two provided values:

M Generate a random number between two provided values.

It’s time to return to our program and make our changes.

31

what we now know

Reviewing Our Experiments

Before you forge ahead and change your program, let’s quickly review the
outcome of our shell experiments.

We started by writing a for loop, which iterated five times:

>>> for num in range (5):
print ('Head First Rocks!')

Head First Rocks!

Head First Rocks! We aslfcd for a vange of five numbers,
Head First Rocks! <&<—— Sowe 'JF‘*aJCCd five times, which
Head First Rocks! results in five messages.

Head First Rocks!

Then we used the sleep function from the t ime module to pause execution
of our code for a specified number of seconds:

>>> import time The shell 'm?ovlcs the “Lime” module, ‘chJc'mg us
>>> time.sleep(5) S ke the “sleep” function.

invo

And then we experimented with the randint function (from the random
module) to generate a random integer from a provided range:

>>> import random

>>> random.randint (1, 60)

12 _ Note: diffevent integers are generated
>>> random.randint (1, 60) < onte move, as “vandint” vreturns 3 different
42 vandom integer each time it's invoked.
>>> random.randint (1, 60)

17

We can now put all of this together and change our program.

Let’s remind ourselves of what we decided to do earlier in this chapter: have
our program iterate, executing the “minute checking code” and the i f/
else statement five times, and pausing for a random number of seconds
between each iteration. This should result in five messages appearing on
screen before the program terminates.

32 Chapter 1

basics

\

@@g Code Expernnents Magnets

/-—- Based on the specification at the bottom of the last page, as well as
B‘ the results of our experimentations, we went ahead and did some
of the required work for you. But, as we were arranging our code
magnets on the fridge (don’t ask) someone slammed the door, and
_! now some of our code’s all over the floor.

Your job is to put everything back together, so that we can run the
new version of our program and confirm that it's working as required.

from datetime import datetime

Detide which code

ma y\c‘{; SOCS n Cach_ﬁ ..

of {:hc dashed-line s

\oca{‘.lons-

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right this minute = datetime.today().minute
if right this minute in odds:

print ("This minute seems a little odd.")
else:

print ("Not an odd minute.")

walt time =

time.sleep
Wheve do [;
all these - import random
A import time l-_;
90¢
I for i in range(5): ' random.randint (1, 60)

33

rearranged code

/;;é \ Code Experiments Magnets Solution

/——E Based on the specification from earlier, as well as the results of our
Y| experimentations, we went ahead and did some of the required work

for you. But, as we were arranging our code magnets on the fridge
(don't ask) someone slammed the door, and now some of our code’s all

over the floor.

Your job was to put everything back together, so that we could run the
new version of our program and confirm that it's working as required.

e

You don't have to
\mJ(: your im?or{’,s
at the {-9\7 o(: Your
tode, b"{-‘ i‘{‘, is 3

well—established
tonvention amony from datetime import datetime

Python programmers
+o do so

import random

odds = [1, 3, 5, 7, 9,
21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

»
The “for 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]
loop itevates

EXACTL\{\> for i in range(5):

11, 13, 15, 17, 19,

five times-
right this minute = datetime.today () .minute
if right this minute in odds:
print ("This minute seems a little odd.") Al of this tode
else: is indented
“eandint” funetion . . — under the “for”
The van print ("Not an odd minute.") or
S‘l;a‘{ZCmcy\{, as it

is all part of the
........ N) “for” statement’s

suite. Remember-
Python does not
use turly braces to
dclimi'l: Sui‘l‘,cs,' it
uses indentation
instead.

; om
provides 3 vand ﬂait time =[random.randint (1, 60)

- acsioned
inkeaer .H\a{ is assigne -
l{; ?ncw vaviable called time.sleep

“wai{:__{imc", whith...

~is then used in the call 4o “sleep” to pause

)
the program’s exetution for a vrandom number
setonds.

34 Chapter 1

e

= ©
"

{

—Test Drive

the basics

Let's try running our upgraded program in IDLE to see what happens. Change your version
of odd.py as needed, then save a copy of your new program as odd2 . py. When you're

ready,

When You press
vun this tode.

press F5 to execute your code.

FG o [ey | odd?2.py - /Users/Paul/Desktop/_NewBook/ch01/odd2.py (3.4.3)

from datetime import datetime
\\—§ import random

~You should see output

similar to Lhis. Just

remember that your

import time

odds = [1, 3, 5, 7, 9, 11, 13, 15,

for i in range(5):
right_this_minute = datetime.today()
if right_this _minute in odds:

output will diffev, as print ("This minute seems a littl

the vandom numbeys

Program generates most
'lkcl\/ won't mateh ours.

else:

print ("Not an odd minute.")
wait_time = random.randint(l, 60)
time.sleep(wait_time)

\/OMY‘

21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

17, 19,

.minute

e odd.")

| Ln: 19|Col: 0

e0e® Python 3.4.3 Shell
>>> RESTART
>>>

This minute seems a little odd.
This minute seems a little odd.
Not an odd minute.
Not an odd minute.
Not an odd minute.

22>

Ln: 25 Col: 4| |

: i a diffevent list of messages
L Dot o] : Fhoe YomI <chould see five messages,

+han those shown heve.
as that's how many Limes the loop tode vuns.

you are here » 35

update our

Updating What We Already Know

With odd2 . py working, let’s pause once more to review the new
things we’ve learned about Python from these last 15 pages:

%BU[[ET POINTS

When trying to determine the code that they

need to solve a particular problem, Python
programmers often favor experimenting with code
snippets at the shell.

If you're looking at the >>> prompt, you're at the
Python Shell. Go ahead: type in a single Python
statement and see what happens when it runs.

The shell takes your line of code and sends it to
the interpreter, which then executes it. Any results
are returned to the shell and are then displayed
on screen.

The for loop can be used to iterate a fixed
number of times. If you know ahead of time how
many times you need to loop, use for.

When you don't know ahead of time how often
you're going to iterate, use Python’s while loop
(which we have yet to see, but—don’t worry—we
will see it in action later).

The for loop can iterate over any sequence
(like a list or a string), as well as execute a fixed
number of times (thanks to the range function).

If you need to pause the execution of your
program for a specified number of seconds, use
the s1eep function provided by the standard
library’s t ime module.

You can import a specific function from a module.
For example, from time import sleep
imports the s1eep function, letting you invoke it
without qualification.

If you simply import a module—for example,
import time—you then need to qualify the
usage of any of the module’s functions with the
module name, like s0: time.sleep ().

The random module has a very useful function
called randint that generates a random
integer within a specified range.

The shell provides two interactive functions that
work at the >>> prompt. The d1ir function lists
an object’s attributes, whereas he 1p provides

access to the Python docs.

Dum

Q; Do | have to remember all this stuff?

therejare no
b Questions

A: No, and don't freak out if your brain is resisting the insertion of everything seen so far. This is only the first chapter, and we’ve designed it
to be a quick introduction to the world of Python programming. If you're getting the gist of what's going on with this code, then you're doing fine.

36

A Few Lines of Code Do a Lot

big list...

Phew! That's another

It is, but we are on a roll here.

It’s true we’ve only touched on a small amount
of the Python language so far. But what we’ve
looked at has been very useful.

What we’ve seen so far helps to demonstrate
one of Python’s big selling points: a_few lines of
code do a lot. Another of the language’s claims
to fame is this: Python code is easy to read.

In an attempt to prove just how easy, we
present on the next page a completely different
program that you already know enough about
Python to understand.

Who’s in the mood for a nice, cold beer?

basics

37

serious about

Coding a Serious Business Application

With a tip of the hat to Head First jJava, let’s take a look at the Python version of
that classic’s first serious application: the beer song.

Shown below is a screenshot of the Python version of the beer song code. Other

than a slight variation on the usage of the range function (which we’ll discuss in
a bit), most of this code should make sense. The IDLE edit window contains the

code, while the tail end of the program’s output appears in a shell window:

[] ¢] beersong.py - /Users/Paul/Desktop/_NewBook/ch01/beersong.py (3.4.3)

word = "bottles”
for beer num in range(99, 0, -1):
print(beer_num, word, "of beer on the wall.")
print(beer_num, word, "of beer.")
print ("Take one down.")
print ("Pass it around.")

Running this code
Produces this

if beer num == 1: output in Lthe
print ("No more bottles of beer on the wall.") shell.
else:
new_num = beer_num - 1
if new_num == 1:
word = "bottle”
print (new_num, word, "of beer on the wall.")
print()
| [J o} Python 3.4.3 Shell
v
'ﬁ 3 bottles of beer on the wall.
3 bottles of beer.
. . Take one down.
Pealing with all that beer... |pass it around.
With the code shown above typed 2 bottles of| beer on the wall.
nto an IDLE edit window and saved., 2 bottles of beer on the wall.
pressing I'5 produces a lot of oiutput.m 2 bottles of beer.
the shell. We’ve only shown a little bit Take one down.
of the resulting output in the window Pass it around.
on the right, as the beer song starts 1 bottle of beer on the wall.
with 99 bottles of beer on the wall and
counts down until there’s no more beer. 1 bottle of beer on the wall.
In fact, the only real twist in this code 1 bottle of beer.
1s how it handles this “counting down,” Take one down.
so let’s take a look at how that works Pass it around.
before looking at the program’s code in No more bottles of beer on the wall.
detail.
>>>

Ln: 860|Col: 12

38

the basics

Python Code Is Easy to Read

That code really is easy
to read. But what's the
catch?

There isn’t one!

When most programmers new to Python
first encounter code like that of the beer

song, they assume that something’s got to
give somewhere else.

There has to be a catch, doesn’t there?

No, there doesn’t. It’s not by accident that
Python code is easy to read: the language
was designed with that specific goal in mind.
7 Guido van Rossum, the language’s creator,
o4 wanted to create a powerful programming
tool that produced code that was easy to
maintain, which meant code created in
Python has to be easy to read, too.

you are here » 39

losing your

Is Indentation Priving You Crazy?

Hang on a second. All this
indentation is driving me crazy.
Surely that's the catch?

indentation at the end of this chapter.

Getting back to the beer song code

If you take a look at the invocation of range in the beer song, you’ll notice

that it takes three arguments as opposed to just one (as in our first example
program).

Take a closer look, and without looking at the explanation on the next page,
see if you can work out what’s going on with this call to range:

[JoN) beersong.py - /Users/Paul/Deskiop/_NewBook/ch0%,w.

Indentation takes time to get used to.

you’ll hardly notice you’re indenting your suites.

One problem that some programmers do have with

Our advice: don’t mix tabs with spaces in_your Python code.

word = "bottles”

for beer num in range(99, 0, -1): & g

print(beer_num, word, "of beer on
print (beer_num, word, "of beer.")
2 n e n

40

Don’t worry. Everyone coming to Python from a “curly-
braced language” struggles with indentation at first. But it
does get better. After a day or two of working with Python,

indentation occurs when they mix tabs with spaces. Due to
the way the interpreter counts whitespace, this can lead
to problems, in that the code “looks fine but refuses to run.
This is frustrating when you're starting out with Python.

In fact, we’d go even further and advise you to configure
your editor to replace a tap of the 7ab key with four spaces
(and while you’re at it, automatically remove any trailing
whitespace, too). This is the well-established convention
among many Python programmers, and you should
follow it, too. We’ll have more to say about dealing with

This is new: the ¢all
to “range" takes

three arquments,

no{: one.

basics

Asking the Interpreter for Help on a
Function

Recall that you can use the shell to ask for help with anything to do with
Python, so let’s ask for some help with the range function.

When you do this in IDLE, the resulting documentation is more than a
screen’s worth and it quickly scrolls off the screen. All you need to do is scroll
back in the window to where you asked the shell for help (as that’s where the
interesting stuft’ about range is):

>>> help (range)

Help on class range in module builtins: The “range” funetion
tan be invoked in one

of ¢
class range (object) vo ways
| range(stop) -> range object

| range(start, stop[, step]) -> range object
|
|

Return a sequence of numbers from start to stop by step.

r& This looks like it will give us

Starting, stopping, and stepping what v need heve.

As range is not the only place you’ll come across start, stop, and step,
let’s take a moment to describe what each of these means, before looking at
some representative examples (on the next page):

o The START value lets you control from WHERE the range begins.
So far, we’ve used the single-argument version of range, which—from the documentation—
expects a value for stop to be provided. When no other value is provided, range defaults to
using O as the start value, but you can set it to a value of your choosing. When you do, you
must provide a value for stop. In this way, range becomes a multi-argument invocation.

6 The STOP value lets you control WHEN the range ends.
We’ve already seen this in use when we invoked range (5) in our code. Note that the range
that’s generated never contains the stop value, so it’s a case of up-to-but-not-including stop.

e The STEP value lets you control HOW the range is generated.
When specifying start and stop values, you can also (optionally) specify a value for step. By
default, the step value is 1, and this tells range to generate each value with a stride of 1; that
15,0, 1, 2, 3, 4, and so on. You can set step to any value to adjust the stride taken. You can
also set step to a negative value to adjust the direction of the generated range.

41

home on the range

Experimenting with Ranges

Now that you know a little bit about start, stop, and step, let’s experiment at
the shell to learn how we can use the range function to produce many different
ranges of integers.

To help see what’s going on, we use another function, 1ist, to transform
range’s output into a human-readable list that we can see on screen:

>>> range (5) < This is how we used “vange” in our Kiest program.

range (0, 5)

ina the output from “ranae” o “list” produtes a list.
>>> list(range (5M Feeding the output from “rang .
[0 ’ 1 , 2 , 3 , 4]

>>> list(range (5, 10))<c——— We tan adjust the START and STOP values for “vange”.

[5, 6, 7, 8, 9] (__
>>> list(range(0, 10, 2)) [£ is also possible +o ad\)uch the STEP value.

[0, 2, 4, 6, 8]

>>> list(range (10, 0, -2)) Things get veally interesting when you adjust the
[10, 8, 6, 4, 2] M vange’s divection by negating the STEP value.

>>> list(range (10, 0, 2)) € Python wor't stop you from being silly. 1§ your START
[] value is bigger than your STOP value, .s{’)
you get back nothing (in Lhis tase, an empty list):

>>> list(range (99, 0, -1))
[99, 98, 97, 96, 95, 94, 93, 92, ... 5, 4, 3, 2, 1]

After all of our experimentations, we arrive at a range invocation (shown last,
above) that produces a list of values from 99 down to 1, which is exactly what
the beer song’s for loop does:

00 beersong.py - /Users/Paul/Desktop/_NewBook/ch(% .

word = "bottles” The call £o “vange”

for beer num in range(99, 0, -1): & § takes three
print (beer_num, word, "of beer on arquments: start,

n

print (beer_num, word, stop, and step.

e .

42 Chapter 1

and STEP is ‘aosi{:ivc,

basics

_ qaoharpen your pencil
aherpen your p

\\ Here again is the beer code, which has been spread out over the
entire page so that you can concentrate on each line of code
that makes up this “serious business application.”

Grab your pencil and, in the spaces provided, write in what you
thought each line of code does. Be sure to attempt this yourself
before looking at what we came up with on the next page. We've
got you started by doing the first line of code for you.

Assign the value “bottles” (a string) to a

new vaviable called “word”.

word = "bottles"

for beer num in range (99, 0, -1):

print(beer_num, word, "of beer on the wall.")

print (beer num, word, "of beer.")

print ("Take one down.")

print ("Pass it around.")

if beer num ==

print ("No more bottles of beer on the wall.")

1S @ e sttt s

new _num = beer num - 1

if new num == e

word = "bottle"

print (new _num, word, "of beer on the wall.")

print ()

43

beer

— qaoharpen vour pencil
AP ySoILF:tion

word = "bottles"

for beer num in range (99, O,

print ("Take one down.")
print ("Pass it around.")

if beer num ==
else:

if new num ==
word = "bottle"
print (new num, word,

print ()

Here again is the beer code, which has been spread out over the
entire page so that you can concentrate on each line of code
that makes up this “serious business application.”

You were to grab your pencil and then, in the spaces provided,
write in what you thought each line of code does. We did the first
line of code for you to get you started.

How did you get on? Are your explanations similar to ours?

-1):

print (beer num, word, "of beer on the wall.")

print(beer_num, word, "of beer.")

print ("No more bottles of beer on the wall.")

new num = beer num - 1

"of beer on the wall.")

Assigv\ the value “bottles” (a s{:\ring) to a

new vaviable called “word”.

Loop a s?céi-cicd number of times, from
99 down 1o (but not intluding) zero. Use
“bccr__hum" as the |oo\> itevation vaviable.

The four calls to the print function
display the turrent iteration’s song

lyries, “99 bottles of beer on the wall. 19
bottles of beer. Take one down. Pass it
avound.”, and so on with eath itevation.

Chetk to see if we are on the last
passed—around beer-..

Remember the number of the next beer in
another variable called “new_num”.

Change the value of the “word” variable
so the last lines of the lyrie make sense.

AL the end of this itevation, print a
blank line. When all the iterations are
complete, terminate the program.

44

basics

Pont Forget to Try the Beer Song Code

If you haven’t done so already, type the beer song code into IDLE, save it as beersong.py,
and then press IS to take it for a spin. Do not move on to the next chapter until you have a working beer
song.

thereqare no R
Dumb Questions

You can then save your code and press F5 to try running it
again. If it still refuses to run, check that your code is exactly
the same as we presented in this chapter. Be very careful

of any spelling mistakes you may have made with your
variable names.

Q} | keep getting errors when | try to run my beer
song code. But my code looks fine to me, so I'm a little
frustrated. Any suggestions?

A: The first thing to check is that you have your
indentation right. If you do, then check to see if you have
mixed tabs with spaces in your code. Remember: the code

Q: The Python interpreter won’t warn me if | misspell
new_numas nwe num?

will look fine (to you), but the interpreter refuses to run it. If .

you suspect this, a quick fix is to bring your code into an A No, it won't. As long as a variable is assigned a value,
IDLE edit window, then choose Edit...— Select All from the Python assumes you know what you're doing, and continues
menu system, before choosing Format...— Untabify Region. 1o execute your code. It is something to watch for, though,

If you've mixed tabs with spaces, this will convert all your so be vigilant.

tabs to spaces in one go (and fix any indentation issues).

Wrapping up what you already know

Here are some new things you learned as a result of working through (and
running) the beer song code:

%BUI.I.ET POINTS

= |ndentation takes a little time to get used to. Every ~ ® The range function can take more than one
programmer new to Python complains about argument when invoked. These arguments let you
indentation at some point, but don’t worry: soon control the start and stop values of the generated
you'll not even notice you're doing it. range, as well as the step value.

m |fthere’s one thing that you should never, ever ® The range function’s step value can also be
do, it's mix tabs with spaces when indenting specified with a negative value, which changes the
your Python code. Save yourself some future direction of the generated range.
heartache, and don’t do this.

With all the beer gone, what’s next?

That’s it for Chapter 1. In the next chapter, you are going to learn a bit more
about how Python handles data. We only just touched on lists in this chapter,
and it’s time to dive in a little deeper.

45

the code

Chapter 1's Code

from datetime import datetime

odds =

(i, 3, 5 7, 9, 11, 13, 15,
21, 23, 25, 27, 29, 31, 33, 35,
41, 43, 45, 47, 49, 51, 53, 55,

17, 19,
37, 39, We .
57, 59] e started with

4’_ 'tht “Odd-PY”

right this minute = datetime

if right this minute in odds:

print ("This minute seems
else:

print ("Not an odd minute.

.today () .minute

a little odd.™")

F‘mﬁ"'am, 'H\Ch...

")
from datetime import datetime

import random
import time

.. extended the code to

treate “oddl.\?\/", whith van

the “minute theeking code

‘Civc Limes (£hanks {0 the use —_—
of P\/{:hov\’s “for” loop)-

odds =

r, 3, 5 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

for i in range(5):

right this minute = datetime.today () .minute
if right this minute in odds:

print ("This minute seems a little odd.")
else:

print ("Not an odd minute.")
wait time = random.randint (1, 60)
time.sleep (wait time)

word = "bottles"

for beer num in range(99, 0, -1):
print (beer num, word,
print (beer num, word,
print ("Take one down.")
print ("Pass it around.")
if beer num ==

else:
new num = beer num - 1
if new num ==
word = "bottle"
print (new num, word,
print ()

"of beer on the wall.")
"of beer.")

print ("No more bottles of beer on the wall.")

"of beer on the wall.")

We concluded this
thapter with the Python
version of the Head
&—— First elassic “beer song.”
And, yes, we know: it’s
hard not 4o work on
this tode without sin

alons... ® "3

46 Chapter 1

2 |ist data
*
* Working with Ordered Data +

This data would be
500000 much easier to
work with...if only I'd

arranged it as a list.

All programs process data, and Python programs are no exception.

In fact, take a look around: data is everywhere. A lot of, if not most, programming is all about

data: acquiring data, processing data, understanding data. To work with data effectively, you need
somewhere to put your data when processing it. Python shines in this regard, thanks (in no small
part) to its inclusion of a handful of widely applicable data structures: lists, dictionaries, tuples, and
sets. In this chapter, we'll preview all four, before spending the majority of this chapter digging deeper
into lists (and we’ll deep-dive into the other three in the next chapter). We're covering these data

structures early, as most of what you'll likely do with Python will revolve around working with data.

this is a new chapter

47

variable

Numbers, Strings...and Objects

Working with a single data value in Python works just like you’d expect it to.
Assign a value to a variable, and you’re all set. With help from the shell, let’s
look at some examples to recall what we learned in the last chapter.

Numbers

Let’s assume that this example has already imported the random module.
We then call the random. randint function to generate a random number
between 1 and 60, which is then assigned to the wait time variable. As
the generated number is an integer, that’s what type wait time isin this
instance:

>>> wait time = random.randint(l, 60)
>>> wait time
26

Note how you didn’t have to tell the interpreter that wait time is going to
contain an integer. We assigned an integer to the variable, and the interpreter
took care of the details (note: not all programming languages work this way).

Strings

If you assign a string to a variable, the same thing happens: the interpreter
takes care of the details. Again, we do not need to declare ahead of time that
the word variable in this example is going to contain a string:

>>> word = "bottles"
>>> word
'bottles’

This ability to dynamically assign a value to a variable is central to Python’s
notion of variables and type. In fact, things are more general than this in that
you can assign anything to a variable in Python.

Objects

In Python everything is an object. The means that numbers, strings, functions,
modules—everything—is an object. A direct consequence of this is that all
objects can be assigned to variables. This has some interesting ramifications,
which we’ll start learning about on the next page.

48

A variable
takes on the
type of the

value assignec[.

Everything is an
olaject in pyt]mon,
and any ol)ject
can he assigneJ
to a variable.

“Everything Is an Object”

Any object can be dynamically assigned to any variable in Python. Which begs the
question: what’s an object in Python? The answer: everything is an object.

All data values in Python are objects, even though—on the face of things—“Don’t
panic!” is a string and 42 is a number. To Python programmers, “Don’t panic!” is a
string object and 42 is a number object. Like in other programming languages, objects can
have state (attributes or values) and behavior (methods).

All this talk of "objects” can
mean only one thing: Python is object-
oriented, right?

Sort of.

You can certainly program Python in an object-oriented way
using classes, objects, instances, and so on (more on all of this later
in this book), but you don’t have to. Recall the programs from the
last chapter...none of them needed classes. Those programs just
contained code, and they worked fine.

Unlike some other programming languages (most notably, Java),
you do not need to start with a class when first creating code in
Python: you just write the code you need.

Now, having said all that (and just to keep you on your toes),
everything in Python behaves as if it is an object derwed from some
class. In this way, you can think of Python as being more object-

& Yy based as opposed to purely object-oriented, which means that

object-oriented programming is optional in Python.

But..what does all this actvally mean?

As everything is an object in Python, any “thing” can be assigned to any variable, and
variables can be assigned anything (regardless of what the thing is: a number, a string, a
function, a widget...any object). Tuck this away in the back of your brain for now; we’ll
return to this theme many times throughout this book.

There’s really not a lot more to storing single data values in variables. Let’s now take a
look at Python’s built-in support for storing a collection of values.

data

49

data structures

Meet the Four Built-in Pata Structures

Python comes with four built-in data structures that you can use to hold any
collection of objects, and they are list, tuple, dictionary, and set.

Note that by “built-in” we mean that lists, tuples, dictionaries, and sets are always
available to your code and they do not need to be imported prior to use: each of these
data structures is part of the language.

Opver the next few pages, we present an overview of all four of these built-in data
structures. You may be tempted to skip over this overview, but please don’t.

If you think you have a pretty good idea what a list is, think again. Python’s list
1s more similar to what you might think of as an array, as opposed to a linked-list,
which is what often comes to mind when programmers hear the word “list.” (If
you’re lucky enough not to know what a linked-list is, sit back and be thankful).

Python’s list is the first of two ordered-collection data structures:

o List: an ordered mutable collection of objects
A list in Python is very similar to the notion of an array in other
programming languages, in that you can think of a list as being an indexed
collection of related objects, with each slot in the list numbered from zero
upward.

Unlike arrays in a lot of other programming languages, though, lists are
dynamic in Python, in that they can grow (and shrink) on demand. There

1s no need to predeclare the size of a list prior to using it to store any objects.

Lists are also heterogeneous, in that you do not need to predeclare the type
of the object you're storing—you can mix’n’'match objects of different types
in the one list if you like.

Lists are mutable, in that you can change a list at any time by adding,
removing, or changing objects.

Lists tan

d\/nam\cally shrink /\r .

and grow to any

size

object) |4

object) |3

ave numbered {rom
Zero UPW&V‘d-..‘EhcsC
1 are “index values.”

ox/

object

Qchcts are stored j; object
in individual slots

in the list. — > | (object

N

List
50

As with arrays, slots

A list is like
an array—
the o]ojects
it stores

are ordered
sec[uentially
in slots.

data

Ordered Collections Are Mutable/lmwmutable

Python’s list is an example of a mutable data structure, in that it can change (or
mutate) at runtime. You can grow and shrink a list by adding and removing objects as
needed. It’s also possible to change any object stored in any slot. We’ll have lots more
to say about lists in a few pages’ time as the remainder of this chapter is devoted to
providing a comprehensive introduction to using lists.

When an ordered list-like collection is immutable (that is, it cannot change), it’s
called a tuple:

e Tuple: an ordered immutable collection of objects
A tuple 1s an immutable list. This means that once you assign objects to a tuple,
the tuple cannot be changed under any circumstance.

It 1s often useful to think of a tuple as a constant list.

Most new Python programmers scratch their head in bemusement when they
first encounter tuples, as it can be hard to work out their purpose. After all,
what use 1s a list that cannot change? It turns out that there are plenty of use
cases where you’ll want to ensure that your objects can’t be changed by your (or
anyone else’s) code. We’ll return to tuples in the next chapter (as well as later in
this book) when we talk about them in a bit more detail, as well as use them.

Tuples ave like lists,
extept onte treated

they CANNOT A tuple

¢hange. Tu‘?‘CS are

tonstant lit._/\' is an
2 immutable
! list.
:
Tuples use index
Tuple values, too (just
like lists).

Lists and tuples are great when you want to present data in an ordered way (such as a
list of destinations on a travel itinerary, where the order of destinations ¢s important).
But sometimes the order in which you present the data usn’t important. For instance,
you might want to store some user’s details (such as their i/ and password), but you
may not care in what order they’re stored (just that they are). With data like this, an
alternative to Python’s list/tuple is needed.

51

data structures 201

An Unordered Data Structure: Dictionary

If keeping your data in a specific order isn’t important to you, but structure
1s, Python comes with a choice of two unordered data structures: dictionary
and set. Let’s look at each in turn, starting with Python’s dictionary.

e Dictionary: an unordered set of key/value pairs
Depending on your programming background, you may already know what a
dictionary is, but you may know it by another name, such as associative array,
map, symbol table, or hash.

Like those other data structures in those other languages, Python’s dictionary
allows you to store a collection of key/value pairs. Each unique key has a value
associated with it in the dictionary, and dictionaries can have any number of
pairs. The values associated with a key can be any object (of any type).

Dictionaries are unordered and mutable. It can be useful to think of Python’s
dictionary as a two-columned, multirow data structure. Like lists, dictionaries
can grow (and shrink) on demand.

Dictionavies assotiate keys o
with values, and (like lists) ean A chtwnary

d namicall shrink and grow to
azy e : —l stores lcey/

value pairs.

key#4 object

key#1 object \
N
3

‘K C\/S

key#3 object

AN

key#2 object

Dictionary

Something to watch out for when using a dictionary is that you cannot rely
upon the internal ordering used by the interpreter. Specifically, the order

in which you add key/value pairs to a dictionary is not maintained by the
interpreter, and has no meaning (to Python). This can stump programmers
when they first encounter it, so we’re making you aware of it now so that
when we meet it again—and in detail—in the next chapter, you’ll get less of a
shock. Rest assured: it is possible to display your dictionary data in a specific
order if need be, and we’ll show you how to do that in the next chapter, too.

52 Chapter 2

data

A Data Structure That Avoids Duplicates: Set

The final built-in data structure is the set, which is great to have at hand when you want
to remove duplicates quickly from any other collection. And don’t worry if the mention
of sets has you recalling high school math class and breaking out in a cold sweat.
Python’s implementation of sets can be used in lots of places.

O Set: an unordered set of unique objects
In Python, a set is a handy data structure for remembering a collection of
related objects while ensuring none of the objects are duplicated.

The fact that sets let you perform unions, intersections, and differences is an
added bonus (especially if you are a math type who loves set theory).

Sets, like lists and dictionaries, can grow (and shrink) as needed. Like dictionaries,
sets are unordered, so you cannot make assumptions about the order of the
objects in your set. As with tuples and dictionaries, you’ll get to see sets in action
in the next chapter.

Think of aset
as a ctollection of

unordered unique ‘\/ A Set Cloes HOt

items—no du?\ida{cs
allowed. allow c[uplicate
objects.

object f

Set
The 80/20 data structure rule of thumb

The four built-in data structures are useful, but they don’t cover every possible data
need. However, they do cover a lot of them. It’s the usual story with technologies
designed to be generally useful: about 80% of what you need to do is covered, while
the other, highly specific, 20% requires you to do more work. Later in this book, you’ll
learn how to extend Python to support any bespoke data requirements you may

have. However, for now, in the remainder of this chapter and the next, we’re going to
concentrate on the 80% of your data needs.

The rest of this chapter is dedicated to exploring how to work with the first of our four
built-in data structures: the list. We’ll get to know the remaining three data structures,
dictionary, set, and tuple, in the next chapter.

53

lists are

A List Is an Ordered Collection of Objects

. -object 4
When you have a bunch of related objects and you need to put them somewhere
in your code, think list. For instance, imagine you have a month’s worth of daily 3
temperature readings; storing these readings in a list makes perfect sense. 2
Whereas arrays tend to be homogeneous affairs in other programming languages, !
in that you can have an array of integers, or an array of strings, or an array of 0

temperature readings, Python’s list is less restrictive. You can have a list of objects,
and each object can be of a differing type. In addition to being heterogeneous,
lists are dynamic: they can grow and shrink as needed.

List

Before learning how to work with lists, let’s spend some time learning how to spot
lists in Python code.

How to spot a list in code

Lists are always enclosed in square brackets, and the objects contained within
the list are always separated by a comma.

Recall the odds list from the last chapter, which contained the odd numbers from
0 through 60, as follows:

A list of the
/ Odd humbcrs.

/ odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

The sk skarks vith an 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
e liIst s
opening squave bracket. 41, 43, 45, 47, 49, 51, 53, 55, 57, 59)]

N
N

Thc ,IS‘E cnds W"H’\ a

The data values (aka. “the tlosing square bracket.

ob\')cc{:S") are sepavated from one
another by a tomma.

When a list 1s created where the objects are assigned to a new list directly in

your code (as shown above), Python programmers refer to this as a literal .

list, in that the list is created and populated in one go. LIStS can l)e

The other way to create and populate a list is to “grow” the list in code, createJ lltel‘au,y
appending objects to the list as the code executes. We’ll see an example of " " .

this method later in this chapter. or gr own 1n COC[e.

Let’s look at some literal list examples.

54

Creating Lists Literally

assigmcn{: operator..

data

Our first example creates an empty list by assigning [] to a variable called prices: - ;
-object
s 2
prices =
et |
'IIII'I 0
The vaviable name is on the left of {:hC-—/ \— ~and the “literal list” is on =
{:hc Ylgh‘{: Ih 'EhIS caSC, ,thc List
list is empty.

Here’s a list of temperatures in degrees Fahrenheit, which is a list of floats:

V=

temps = [32.0, 212.0, 0.0, 81.6, 100.0, 45.3]

How about a list of the most famous words in computer programming? Here they are:

words

= ['hello', 'world']

Here’s a list of car details. Note how it is OK to store data of mixed types in a list.
Recall that a list is “a collection of related objects.” The two strings, one float, and one
integer in this example are all Python objects, so they can be stored in a list if needed:

car_details

< l
['Toyota', 'RAVA', 2.2, 60807] A list of

Objccfs Gin this tase,
some floats) are
sepavated by commas
and survounded b
squave brackets—it’s
a list.

A list of
\/ s{:\ring ob\)cc{is

Z?jcc{:;

Our two final examples of literal lists exploit the fact that—as in the last example—
everything is an object in Python. Like strings, floats, and integers, lists are objects, too.

Here’s an example of a list of list objects:

everything = [prices, temps, words, car_details]

And here’s an example of a literal list of literal lists:

lj:s{;s lV odds_and_ends
a lis

rri 2, 31, ['a', 'b', 'e' 1,

['One', 'Two', 'Three']]

dixcxccv-ing
type

Don'{: worry if
these last two
examples are
(:!rcaking You

out. We won't

be working with
any-{:hing as tomplex
as this until a later

chap{:cv-.

you are here » 55

lists at

Putting Lists to Work

The literal lists on the last page demonstrate how quickly lists can be created

object | |4

and populated in code. Type in the data, and you’re off and running, object) |3
bject) |2
In a page or two, we’ll cover the mechanism that allows you to grow (or S
shrink) a list while your program executes. After all, there are many situations object) | 1
where you don’t know ahead of time what data you need to store, nor how object) |0
many objects you're going to need. In this case, your code has to grow (or List
“generate”) the list as needed. You’ll learn how to do that in a few pages’ time.
For now, imagine you have a requirement to determine whether a given
word contains any of the vowels (that is, the letters g, ¢, ¢, 0, or ¥). Can we use
Python’s list to help code up a solution to this problem? Let’s see whether we
can come up with a solution by experimenting at the shell.
Working with lists
We’ll use the shell to first define a list called vowels, then check to see if A list of
. . . , . ist of the
each letter in a word is in the vowels list. Let’s define a list of vowels: £
/ ive vowels
>>> vowels = ['a', 'e', 'i', 'o', 'u'l]
With vowels defined, we now need a word to check, so let’s create a
variable called word and setit to "Milliways": 5
o Geek Bits —
Heres 3 word —s 55> word = "Milliways"
{o chetk.
We're only using the letters
[} . . . o
Is one object inside another? Check with “in” aeiou as vowels, even though
) the letter y is considered to be
If you remember the programs from Chapter 1, you will recall that we both a vowel and a consonant.
used Python’s in operator to check for membership when we needed to ask
whether one object was inside another. We can take advantage of in again
here:
>>> for letter in word: < Take each letter in the word..
if letter in vowels: &_)
i ~.and if it is in the “vowels” list..
print (letter)
K’_ ._.disv‘a\l the letter on streen
i
i :
The ou'l:?uf ‘crom £his tode COh‘pirms +he idcn{i{:\/

a & of the vowels in the word “Milliwa\/sn»

Let’s use this code as the basis for our working with lists.

56

data

Use Your Editor When Working on More
Than a Few Lines of Code aojecr) |

object | | 3

In order to learn a bit more about how lists work, let’s take this code and object) |2
extend it to display each found vowel only once. At the moment, the code
displays each vowel more than once on output if the word being searched
contains more than one instance of the vowel. object

object

[}

First, let’s copy and paste the code you’ve just typed from the shell into a new List
IDLE edit window (select File...=New File... from IDLE’s menu). We’re going

to be making a series of changes to this code, so moving it into the editor

makes perfect sense. As a general rule, when the code we’re experimenting

with at the >>> prompt starts to run to more than a few lines, we find it more

convenient to use the editor. Save your five lines of code as vowels.py.

When copying code from the shell into the editor, be careful not to include
the >>> prompt in the copy, as your code won’t run if you do (the interpreter
will throw a syntax error when it encounters >>>).

When you’ve copied your code and saved your file, your IDLE edit window
should look like this:

Yow |'|s+, cxamylc tode [] ® vowels.py - /lUsers/Paul/Deskiop/_NewBook/ch02/vowels.py (3.4.3)

saved as “vowels.py” inside
an [DLE edit window. vowels = ['a’, 'e', 'i', ‘o', 'u']
word = "Milliways"
\ﬁ for letter in word:
if letter in vowels:
print(letter)

Ln: 7 |Col: 0

Pon’t forget: press FF to run your program

With the code in the edit window, press F5 and then watch as IDLE jumps to
a restarted shell window, then displays the program’s output:

[] [] Python 3.4.3 Shell
22>

>>> RESTART
>>>

\ Ln: 20(Col: 4

As expected, this output matehes what
) m d d
the bottom of the last Page, so we've 3<:10ch; 9“:8 . 57

one ata

“Growing” a List at Runtime

Our current program displays each found vowel on screen, including any

duplicates found. In order to list each unique vowel found (and avoid displaying
duplicates), we need to remember any unique vowels that we find, before object | |2
displaying them on screen. To do this, we need to use a second data structure.

object | |4

object | | 3

object

We can’t use the existing vowels list because it exists to let us quickly determine object
whether the letter we’re currently processing is a vowel. We need a second list that
starts out empty, as we’re going to populate it at runtime with any vowels we find.

[}

List

As we did in the last chapter, let’s experiment at the shell before making any
changes to our program code. To create a new, empty list, decide on a new
variable name, then assign an empty list to it. Let’s call our second list found. " 9 .
Here we assign an empty list ([]) to found, then use Python’s built-in function T]fle len l)l[llt-
len to check how many objects are in a collection:

in function

An empty list...
>>> found = 1€ 7Y reports on the

>>> len (found) .which the interpreter (thanks . .
0 N '{;‘:“'lcy\") (,on‘pw'"‘s has no ob\.)CC{',S- SIZe 0{ an OLIeCto

Lists come with a collection of built-in methods that you can use to manipulate
the list’s objects. To invoke a method use the dot-notation syntax: postfix the list’s
name with a dot and the method invocation. We’ll meet more methods later in
this chapter. For now, let’s use the append method to add an object to the end of
the empty list we just created:

Add to an cxis{;in? list at vuntime
>>> found.append('a') < using the “append” method.

>>> len (found
en (found) S The length of the list has now intreased.

1 .
>>> found & Asking the shell to display the tontents oﬂ:{:hc list
['a'] tonfirms the ob‘)ctk is now part of the list.

Repeated calls to the append method add more objects onto the end of the list: L. .
ists come with a

>>> found.append('e’) bunch of built-in
>>> found.append('i') &——— Movre vuntime
>>> found.append('o') additions metllon.

>>> len (found)

4 .
>>> foun o Once again, we use the shell 4o
e 1 ,] l]] o]]

eonfirm all is in order.
1 ' '
['a',

Let’s now look at what’s involved in checking whether a list contains an object.

58

Checking for Mewmbership with “in”

data

. . -object 4

We already know how to do this. Recall the “Milliways” example from a few -
pages ago, as well as the odds . py code from the previous chapter, which ’
checked to see whether a calculated minute value was in the odds list: 2

| |
«w » / A N

The “in oycra{;o\r if right this minute in odds: 0

theeks for print ("This minute seems a little odd.") List

membership.

Is the objeet “in” or “not in"?

As well as using the in operator to check whether an object is contained
within a collection, it is also possible to check whether an object does not exist
within a collection using the not in operator combination.

Using not in allows you to append to an existing list only when you know
that the object to be added isn’t already part of the list:

>>> if 'u' not in found: This fivst invotation of “append”

found.append('u') — works, as “u” does not eurvently
exist within the “found” list (as

the previ 4
>>> found you saw on the previous page, the
[P [P I at Tqq 1 IIS{: co,\{:amcd [3, [Ll,z ‘OIJ).
['a', 'e', 'i o', 'u']

>>> This next invotation of “3"\""d"
>>> if 'u' not in found: does not exetute, as “u” alveady
found.append('u') K__ exists in “found” so does not need
1o be added again-
>>> found

[lal’ lel’ lil lol’ lul]

Would it not be better to
use a set here? Isn't aseta
better choice when you're
trying to avoid duplicates?

Good catch. A set might be better here.

But, we’re going to hold off on using a set until the next
chapter. We’ll return to this example when we do. For now,
concentrate on learning how a list can be generated at
runtime with the append method.

you are here » 59

unique vowels only

I1’s Time to Update Qur Code

Now that we know about not in and append, we can change our code with
some confidence. Here’s the original code from vowels . py again:

K%'

The origir:a\
“vowc\S-?\/l
tode

object | |4

object | | 3

object | |2

vowels = ['a', 'e', 'i',
word = "Milliways"
for letter in word:
if letter in vowels:
print (letter)

}F—ﬁ

object) | 1

object | | 0

List

Save a copy of this code as vowels2.py so that we can make our changes to
this new version while leaving the original code intact.

This ¢ode disylays
the vowels in “word”

as ‘H\C‘/ ave found.

We need to add in the creation of an empty found list. Then we need some extra

code to populate found at runtime. As we no longer display the found vowels as
we find them, another for loop is required to process the letters in found, and

this second for loop needs to execute afler the first loop (note how the indentation
of both loops is aligned below). The new code you need is highlighted:

This is
“vowclsl-\?\/,{ﬁ

Start with /_%
an empty list.

vowels = ['a', 'e', 'i', 'o',
word = "Milliways"
found = []

for letter in word:
if letter in vowels:
if letter not in found:
found.append (letter)
for vowel in found:
print (vowel)

rr

Intlude the code that
| __—— detides whether 4o
uFda{:c the list of

ound vowels.

\ When this 1Ci\rs+, “Lor
setond one gets o vun

vowels found in “word”.

Let’s make a final tweak to this code to change the line that sets word to

. loop terminates, this
, and it disPIays the

“Milliways” to be more generic and more nteractive.
Changing the line of code that reads:

word = "Milliways"
to:

word =

instructs the interpreter to prompt your user for a word to search for vowels. The
input function is another piece of built-in goodness provided by Python.

60 Chapter 2

input ("Provide a word to search for vowels: ")

-
r Do this

*

—

Make the change as suggested
on the left, then save your
updated code as vowels3.py.

_ "\
— ©
/(@’

=

Test Drive

With the change at the bottom of the last page applied, and this latest version of your program

data

saved as vowels3.py, let's take this program for a few spins within IDLE. Remember: to run your
program multiple times, you need to return to the IDLE edit window before pressing the F5 key.

[] ® vowelsd.py - /Users/Paul/Desktop/_NewBook/ch02/vowels3.py (3.4.3)
vowels = ['a’, 'e', 'i', 'o', 'u'l]
/? word = input("Provide a word to search for vowels: ")
Heve's our version found = []
of “vowels3.py” letter word :
with the “input” letter vowels:
edit applied. letter found:
found.append(letter)
vowel found:
print (vowel)
And heve are our
‘ECS’& uns... \r Ln: 11|Col: 0
[Nay Python 3.4.3 Shell
>>> RESTART
>>>
Provide a word to search for vowels: Milliways
i
a
>>> RESTART
>>>
Provide a word to search for vowels: Hitch-hiker
i
=
>>> RESTART
>>>
Provide a word to search for vowels: Galaxy
a
>>> RESTART
>>>
Provide a word to search for vowels: Sky
>>> |
Ln: 21|Col: 4

Our output confirms that this small program is working as expected, and it even does the right thing

when the word contains no vowels. How did you get on when you ran your program in IDLE?

61

manipulating

Removing Objects from a List

Lists in Python are just like arrays in other languages, and then some.

The fact that lists can grow dynamically when more space is needed (thanks
to the append method) is a huge productivity boon. Like a lot of other
things in Python, the interpreter takes care of the details for you. If the list
needs more memory, the interpreter dynamically allocates as much memory

object

object

object

object

object

[}

as needed. Likewise, when a list shrinks, the interpreter dynamically reclaims

memory no longer needed by the list. List

Other methods exist to help you manipulate lists. Over the next four pages
we introduce four of the most useful methods: remove, pop, extend, and
insert:

o remove: takes an object's value as its sole argument
The remove method removes the first occurrence of a specified data value from a list. If
the data value is found in the list, the object that contains it is removed from the list (and
the list shrinks in size by one). If the data value is nof in the list, the interpreter will raise an
error (more on this later):

>>> nums = [1, 2, 3, 4]
>>> nums
[1, 2, 3, 4]

This is what the
“pums” list looks like

before the call N7 2]]}

Lo the “vemove”
J_ This is ¥*not¥ an index value, it's
the value to remove.

mCH’tOd
>>> nums.remove (3)
>>> nums
[1, 2, 4]

After the eall /\
to “\rcmovcn, the ==
ob\')cd', with 3 as L'_u ys I 4 I

its value is gone.

62

data

Popping Objects Off a List

The remove method is great for when you know the value of the object you
want to remove. But often it is the case that you want to remove an object object
from a specific index slot. object

object | |4

(e~

—_

For this, Python provides the pop method: object

object | | 0

N

e pop: takes an optional index value as its argument List
The pop method removes and returns an object from an existing list based on the
object’s index value. If you invoke pop without specifying an index value, the last
object in the list is removed and returned. If you specify an index value, the object
in that location is removed and returned. If a list is empty or you invoke pop with
a nonexistent index value, the interpreter raises an error (more on this later).

Objects returned by pop can be assigned to a variable if you so wish, in which case
they are retained. However, if the popped object is not assigned to a variable, its
memory is reclaimed and the object disappears.

You didn’t £ell “pop”

Before “pop” is called, —_— _,_N_z_l 4 l which item o vemove,

we have a list with so it operates on the
three ob\')cé{ls- / last item in the list.
>>> nums.pop ()

f The “Fo?" method
s mums \r'c*'Ewns the vemoved
g ochc{:, which is veelaimed.

(]
‘Ag{‘;)cr %,hc.
‘S?:f-":kfhc list N E]E:

. § T"\IS is an indcx Valuc. ZCV‘O
As before, “pop Lo - ¢torvesponds to the first object

r;{:wr ;),: r:;?vcd >>> nums . pop (0) in the list (the number |)
o \')c(, . Unte n)

1
the ob\')cc’c is o
vetlaimed by the ———, ! | l
interpreter.
>>> nums

At his point, “mums”
has been veduted to ——> [2] The “nums” list has

a singlc—i{:em list. - shrunk 4o 3 sinale—
Lz_ e temlst

you are here » 63

growing your list

Extending a List with Objects

You already know that append can be used to add a single object to an existing
list. Other methods can dynamically add data to a list, too:

9 extend: takes a list of objects as its sole argument
The extend method takes a second list and adds each of its objects to an existing
list. This method is very useful for combining two lists into one:

This is what R
the “pums” list /_» LZ_]
eurvently looks like:
it is a single—item
list.
o~ Provide 3 list of
>>> nums.extend ([3, 41) o°bjects to append

[2, 3, 4] the existing list.

. [{ »n
We've extended this “nums

list by taking eath of the

ob\')c(:[:s in the ?Yovidcd list
and a??ehding its ob\')cc{',s. \ﬁ [2 t 3 [4

Using an emply list heve is
valid, if a litle silly (as
>>> nums.extend ([]) addihg no items o the e

object

object

object

object

object

List

2 3 4 an cxis("ting list). £ you'd instead
talled “append(C7)”, an empty list
would be added to the end of the

cxis-l:ing list, but—in this ex
using “extend(LJ)” does not

Betause the empty list used to ——> t 2
extend the “nums” list tontained
no ob\')cd‘,S, no‘(‘,hing thanges.

[
KN

64 Chapter 2

amPlc—_

(e~}

N

(==}

Inserting an Object into a List

data

| ()|
The append and extend methods get a lot of use, but they are restricted to .
adding objects onto the end (the righthand side) of an existing list. Sometimes, 3
you’ll want to add to the beginning (the lefthand side) of a list. When this is the 2
case, you’ll want to use the insert method. |
: : : : 0
e insert: takes an index value and an object as its arguments -
The insert method inserts an object into an existing list before a specified index List
value. This lets you insert the object at the start of an existing list or anywhere
within the list. It is not possible to insert at the end of the list, as that’s what the
append method does:
) « " ist looked R _
Heve's how the ‘nums
after all that extending from the—> ! 2 ” 3 l 4 I
\;vcvious page:
>>> nums.insert (0, 1)
>>> nums T R N
(3ka “obiect’) to insevt
[1, 2, 3, 4] The value (aka “obj
The index of the ob\')cé{:
to insevt *before¥
l | u 1 N 3 u ¥ l <— Batk to wheve we started
After all that removing, popping, extending, and inserting, we’ve ended up with the
same list we started with a few pages ago: [1, 2, 3, 4].
Note how it’s also possible to use insert to add an object into any slot in an
existing list. In the example above, we decided to add an object (the number 1) to
the start of the list, but we could just as easily have used any slot number to insert
into the list. Let’s look at one final example, which—just for fun—adds a string into
the middle of the nums list, thanks to the use of the value 2 as the first argument
to insert: /\/\I
The fivst >>> nums.insert (2, "two-and-a-half")
(a‘fsumcn{:) >>> nums
ch?sscd indicates [1, 2, 'two-and-a-half',6 3, 4]
Valiclyﬁcf . And there it is—the
*bcforc;: - — £inal “mums” list, which
) l | u 2 N two—and—a—half l 3 H 4 l has five ob\)cd;s: Four
' numbers and one s‘{:\ring.

Let’s now gain some experience using these list methods.

65

just like

What About Using Square Brackets?

I'm a little confused. You keep telling me that
lists are “just like arrays in other programming
languages,” but you've yet to say anything about the
square bracket notation I use with arrays in my other
favorite programming language. What gives?

Don’t worry, we’re going to get to that in a bit.

The familiar square bracket notation that you know and love
from working with arrays in other programming languages
does indeed work with Python’s lists. However, before we get

around to discussing how, let’s have a bit of fun with some of
the list methods that you now know about.

therejare no R
Dumb Questions

Q,: How do I find out more about these and any other list methods?

A: You ask for help. At the >>> prompt, type help (1ist) to access Python's list documentation (which provides a few pages of

material) or type help (1ist. append) to request just the documentation for the append method. Replace append with any other
list method name to access that method’s documentation.

66

data

_ c@%}rpen your pencil
\\\\ Time for a challenge.

Before you do anything else, take the seven lines of code shown below and

type them into a new IDLE edit window. Save the code as panic.py, and
execute it (by pressing F5).

Study the messages that appear on screen. Note how the first four lines of code
take a string (in phrase), and turn it into a list (in p1ist), before displaying
both phrase and plist on screen.

The other three lines of code take plist and transform it back into a string (in
new_phrase) before displaying plist and new _phrase on screen.

Your challenge is to transform the string "Don’ t panic!" into the string
"on tap" using only the list methods shown thus far in this book. (There’s no
hidden meaning in the choice of these two strings: it's merely a matter of the
letters in “on tap” appearing in "Don’ t panic!"). Atthe moment, panic.

py displays "Don’ t panic!" twice.

We ave s{:&r{:ing Hint: use a for loop when performing any operation multiple times.

with a string.

phrase = "Don't panic!"

M{/:c‘f;r.néh: " ————> plist = list(phrase)
string in '

print (phrase) We display the string
print (plist) } < and the list on sereen.

Ml your sk

maniPulation €0de
heve.

new_phrase = ''.join(plist) x— This line £
. . _ is line takes the
We d|s\>la\/ the print(plist) list and turns it

{:Y-a,\s(:ormcd list and — > print (new_phrase) back into a s{:\rina.

the new string on streen:

67

on tap

— daharpen your penci
\\\'\ SOIUtIOH It was time for a challenge.

Before you did anything else, you were to take the seven lines of code shown
on the previous page and type them into a new IDLE edit window, save the
code as panic.py, and execute it (by pressing F5).

Your challenge was to transform the string "Don’ t panic!" into the
string "on tap" using only the list methods shown thus far in this book.

. Before your changes, panic. displayed “Don’t panic!” twice.
You wevre to add your list y ges, p py display p
maniyula{:ion tode hevre. The new string (displaying “on tap”)isto be stored in the new_phrase
This is what we tame variable.

up with—don't worry if
zows is very diffevent

)
vom ours. | heves

than one wa\/Jco phrase = "Don't panic!”
movre n . ,

?crform the netessary plist = list (phrase)
Lransformations using the print (phrase)

list methods. print (plist)
T foriinvanged):) This small loop pops the

--- % ‘H last 1cowr ob\)cc{:s F\rom

?Iis{;.‘:o‘?o “FI.IS‘[‘,”- No more “nic.’".
Getvid of the doorlO)
‘z at Jcrcts&avk’ 2 st Find, then vemove, the apostrophe
the list.

?lis{rcw\ovc(“ 'y £ ——m from the list.

/ plist.extend(Cplist.pop(), plist.pop()])

Swap the two objctﬁs at list.insert(Z, plist.pop(3))
S e o el T ek, o) <

Liest popping eath ob\')cc{: new phrase = ''.join(plist)
-C\rom the lis‘{:, then us'm5
the popped objects to

print (plist)

extend the list. This is a print (new_phrase) P\is line o‘(: tode pops the space from the
line oio cidc "(cha;c \IJ:“«C" ist, then inserts it back into the list at
need hink about Yor a

index lotation 2. Just like the last line of
little bit. Key point: the tode, the pop otturs *first, before the
pops ottur t«cirs;cth(m 'c’::'f ZQFPCE And, vemember: spactes are

+he order shown), then vatters, too.

the extend happens.

As there’s a lot going on in this exercise solution, the next two
pages explain this code in detail.

68 Chapter 2

data

What Happened to “plist”?

Let’s pause to consider what actually happened to plist as the code in

object | |4

panic.py executed. object) |3
. . . . object

On the left of this page (and the next) is the code from panic.py, which,

like every other Python program, is executed from top to bottom. On the object) | 1

right of this page is a visual representation of plist together with some object) | 0

N

notes about what’s happening. Note how plist dynamically shrinks and

List
grows as the code executes: :

The Code The State of plist

At this point in the code, plist does not yet exist. The
phrase = "Don't panic!" second line of code transforms the phrase string into a
new list, which is assigned to the plist variable:

5 S S
0 I 2 3 & 5 b 78 1 lo 1
Each time the for loop iterates, plist shrinks by one

_ object until the last four objects are gone:
var:ablq (bc{o\r‘c we start
our manipulations). (D_IE] —h_—] _;_ltTlDl_P_] t—a_—ll—_"_l ’l—] t_c_]
for 1 in range(4): l—L——u;—]—b:ﬂ:—lu—i——“——uiu—T—u—i——] i] °
e Sl T 1 by oy 0 A T
IR
o I 2 3 & S b 7
The loop terminates, and plist has shrunk until eight
objects remain. It’s now time to get rid of some other

plist = list (phrase) = l D]

print (phrase) These ¢alls to “Frin{:" displa\/
print (plist) the eurrent state of the

unwanted objects. Another call to pop removes the first
item on the list (which is at index number 0):

O]

o
With the letter D popped off the front of the list, a call to
remove dispatches with the apostrophe:

I 8

plist.pop (0)

\”

plist.remove ("'") \%

o

69

manipulating

What Happened to “plist” Continuved

We’ve been pausing for a moment to consider what actually happened to
plist as the code in panic.py executed. object

object | |4

. . object
Based on the execution of the code from the last page, we now have a six- !

item list with the characters o, n, t, space, p, and a available to us. Let’s object
keep executing our code:

[}

object

N

List
The Code The State of plist

This 1s what p1list looks like as a result of the code on
the previous page executing:

NG

o
The next line of code contains three method
invocations: two calls to pop and one to extend. The

calls to pop happen first (from left to right):
I p— a
plist.extend([plist.pop(), plist.pop()])] L l t N l D
| 2 3 ¥
The call to extend takes the popped objects and adds

them to the end of plist. It can be useful to think of
extend as shorthand for multiple calls to the append

O]

[4) | 2 3 & 5

o
o

All that’s left to do (to plist) is to swap the t character

at location 2 with the space character at index location 3.
The next line of code contains two method invocations.

The first uses pop to extract the space character:

plist.insert (2, plist.pop(3)) o] n l
|

o
Tuwren “P'is ” back
into a S‘Erina.

K N X

Then the call to insert slots the space character into
the correct place (before index location 2):
o n t 3 l
‘_\ «)] l “ lt] ?
% These ealls to “print’ display b 2 3 & s \
the state of the vaviables Ta da/

(after we've per-formed our
mahlPu'a'{:lOHS).

new phrase = ''.Jjoin(plist)
print (plist)
print (new phrase)

data

Lists: What We Know

We’re 20 pages in, so let’s take a little break and review what we’ve
learned about lists so far:

%BUI.I.ET POINTS

m Lists are great for storing a collection of = An empty list is represented like this: [].
related objects. If you have a bunch of
similar things that you'd like to treat as
one, a list is a great place to put them.

= The fastest way to check whether an
objectis in a list is to use Python’s in
operator, which checks for membership.

m Lists are similar to arrays in other
languages. However, unlike arrays in
other languages (which tend to be fixed
in size), Python’s lists can grow and
shrink dynamically as needed.

= Growing a list at runtime is possible
due to the inclusion of a handful of list
methods, which include append,
extend, and insert.

= Shrinking a list at runtime is possible
due to the inclusion of the remove and
pop methods.

= |n code, a list of objects is enclosed in
square brackets, and the list objects are
separated from each other by a comma.

That's all fine by me,
but is there anything I
need to watch out for
when manipulating lists?

Yes. Care is always needed.

As working with and manipulating lists

in Python is often very convenient, care
needs to be taken to ensure the interpreter
1s doing exactly what you want it to.

A case 1n point is copying one list to
another list. Are you copying the list, or
are you copying the objects in the list?
Depending on your answer and on what
you are trying to do, the interpreter will
behave differently. Flip the page to learn
what we mean by this.

7

be careful copying

What Looks Like a Copy, But Isn’t

When it comes to copying an existing list to another one, it’s tempting to use
the assignment operator: c
reate a new list (and zssi
. . a
>>> first = [1, 2, 3, 4, 5] < fe mnber objects by 1)
>>> first .
[1, 2, 3, 4, 5] e The fiest” list's five numbevs

>>> second = first€=—-\\\\\\~
>>> second “Co\?\/" the existing list o a

[1, 2 3, 4 5] new one, talled “setond -

The Seetond” list's Five numbers

So far, so good. That looks like it worked, as the five number objects from
first have been copied to second:

first._)lllZIZI‘\'!‘; ~<—————@ second

Or, have they? Let’s see what happens when we append a new number to
second, which seems like a reasonable thing to do, but leads to a problem:

>>> second.append (6)
>>> second
[1, 2, 3, 4, 5, 6] =—— Thisseems OK, but isn’t

Again, so far, so good—but there’s a bug here. Look what happens when we
ask the shell to display the contents of £irst—the new object is appended
to first too!

>>> first Whoops! The new
[1, 2, 3, 4, 5, 6] = objectis appended 1o
“‘F iV‘S‘E" {',oo.

first._)!l lll%l‘\'l% b | €— second

This is a problem, in that both £irst and second are pointing to the same
data. If you change one list, the other changes, too. This is not good.

72 Chapter 2

data

How to Copy a Pata Structure

If using the assignment operator isn’t the way to copy one list to another,
what is? What’s happening is that a reference to the list is shared among
first and second.

first @=—————> l—l—u ' “ 3 “ & “TH b] ~<€——@ second

To solve this problem, lists come with a copy method, which does the right
thing. Take a look at how copy works:

>>> third = second.copy ()
>>> third
[1, 2, 3, 4, 5, 6]

first @=———————> l | N y' N 3 H g NTH b] ~<—@ second

s e——— (1) 2] 3] #) 2]

Don't use the

With third created (thanks to the copy method), let’s append an object to

it, then see what happens: aSSigﬂmeﬂt
>>> third.append(7) o]aerator to copy a
The “thivd” list >>> third list: the " "
),\asgvowvxb‘[w[ll 2, 3,4, 5, 6, 7] 1515 use e COPy
one object >>> second method instead.

1,2, 3, 4,5, 6]«

Mueh better. The existing
list is unthanged.

first .—)l | H 2 N 3 H & N—G_H b] ~<—@ second

wirs o— [T EEEE El‘it%;i’i‘-.l‘iil;t;ﬁ‘:d to
he “thivd” IiS'f;, o
L_/ oﬂc\cr {:\:: lists (Qcitstg j:;

“second”).

73

give me

Square Brackets Are Everywhere

T can't believe how many square
brackets are on that last page...yet
T still haven't seen how they can be
used to select and access data in my
Python list.

Python supports the square bracket
notation, and then some.

Everyone who has used square brackets with an
array in almost any other programming language

called names using names [0]. The next value
isin names [1], the next in names [2], and so
on. Python works this way, too, when it comes to
accessing objects in any list.

However, Python extends the notation to improve
upon this standardized behavior by supporting

negative index values (-1, -2, -3, and so on) as
well as a notation to select a range of objects from
a list.

Lists: Updating What We Already Know

Before we dive into a description of how Python extends the square bracket
notation, let’s add to our list of bullet points:

knows that they can access the first value in an array

%BUI.I.ET POINTS

® Take care when copying one list to another. If you want to have another variable reference an existing list,
use the assignment operator (=). If you want to make a copy of the objects in an existing list and use them

to initialize a new list, be sure to use the copy method instead.

74

Lists Extend the Square Bracket Notation

All our talk of Python’s lists being like arrays in other programming languages wasn’t
just idle talk. Like other languages, Python starts counting from zero when it comes to
numbering index locations, and uses the well-known square bracket notation to
access objects in a list.

Unlike alot of other programming languages, Python lets you access the list relative to
each end: positive index values count from left to right, whereas negative index values
count from right to left:

P\/‘U'\on)s lists umdcrsjr,and

o 2
yositivc index values, t_D_]
-1z

|

whith start from O...

R

_7 l _'f]

n
-lo

N

Let’s see some examples while working at the shell:

>>> saying = "Don't panic!" Create a list of letters

>>> letters = list(saying)
>>> letters

data

object

object

object

object

object

[e=}

List

~as well as negative index
values, which start from

[’D’, 'o', ’n’, "’", ’t’, |l ', ’p’, 'a', ’n’, 'i', ’c’, '!']
>>> letters[O0]
| D |
>>> letters[3] | < Using positive index values tounts
wrn ‘FV'OM 'C‘(’\{Z +o rngh{:
>>> letters|[6]
| p |
>>> letters[-1]
| ! |
>>> letters [_3] % ‘._whcrcas y\cga‘{',.l‘/e .lth* ValuCS H:)S eas ‘(;o c-{: a£
i tount vigh{‘, to left. the ‘Fir;/{ ahg last
>>> letters[-6] objeets in any list.
| |
p
As lists grow and shrink while your Python code executes, being able to >>> first = letters[O0]
index into the list using a negative index value is often useful. For instance, >>> last = letters[-1]
using —.1 as the index va.lue s glv\{ay_s guaran.teed to return the last object >>> first
in the list no matter how big the list s, just as using 0 always returns the first
. 1 D 1
object.
>>> last

Python’s extensions to the square bracket notation don’t stop with support -
for negative index values. Lists understand start, stop, and step, too. ’

you are here »

75

start stop

Lists Understand Start, Stop, and Step

We first met start, stop, and step in the previous chapter when discussing the three-
argument version of the range function:

[] [] bearsong.py - /Users/Paul/Desktop/_NewBook/ch0%. w.

The eall

{10 « »
word = "bottles"” ; bakee i
for beer_num in range(99, 0, -1): & § ree

print (beer_num, word, "of beer onl j"S“mcr:cic,
pr]:-nt (?eer_num’ word! L1 "°f beer ’ ’) s'z:rz;acsfoFlor
and S‘Ecp.

Recall what start, stop, and step mean when it comes to specifying ranges (and let’s
relate them to lists):

. The START value lets you control WHERE the range begins.

When used with lists, the start value indicates the starting index value.

. The STOP value lets you control WHEN the range ends.

When used with lists, the stop value indicates the index value to stop at, but not include.

. The STEP value lets you control HOW the range is generated.
When used with lists, the step value refers to the séride to take.

You can put start, stop, and step inside square brackets

When used with lists, start, stop, and step are specified within the square brackets and
are separated from one another by the colon (:) character:

letters|[start:stop: step] K_\ R;i:‘f“

ion 1S
It might seem somewhat counterintuitive, but all three values are optional when used :Ztit:: d 4o
together: work with
top,
When start is missing, it has a default value of 0. start, stop
and step-

When stop is missing, it takes on the maximum value allowable for the list.

When step is missing, it has a default value of 1.

76

object

object

object

object

object

List

[}

data

List Slices in Action

Given the existing list letters from a few pages back, you can specify

object | |4

values for start, stop, and step in any number of ways. object) |3

object

Let’s look at some examples:

All the letters

N

object | | 1
\Z object) | 0
>>> letters List
['D', '©', 'm', "'", g, v v, 'P', 'a', 'm', 'i', 'e', '!'] s
Every thivd lett o (
>>> letters[0:10:3] svery etter up to (but not
[D' , wrn , |P| , ER] / lhdludmg) ith% 'oca{jon lo
Skip the £
>>> letters[3:] h;‘; {:. e first {:hrce.ldf‘"'
[nvn, 't', ' |, 'P‘! lal, vn|, 'i', 'C', v!v] 9IVCMCCVCYY'H"'\SCISC.
>>> letters[:10] All lettevs uwp to (but
[va, |°|, |n|, nvu, ltl, 1 |, 'P'I vav, vnv, viv] m{.l',,\cluding)indcut

lotation 10

>>> letters[::2]
['D', 'n', 't', 'P', 'm', 'c'l] HEvcr\lsccondlc{:‘{:ﬂ'

Using the start, stop, step slice notation with lists is very powerful (not to
mention handy), and you are advised to take some time to understand how
these examples work. Be sure to follow along at your >>> prompt, and feel
free to experiment with this notation, too.

therejare no
Dumb Questions

Q: I notice that some of the characters on this page are surrounded by single quotes and others by double quotes. Is there some
sort of standard | should follow?

A: No, there’s no standard, as Python lets you use either single or double quotes around strings of any length, including strings that contain
only a single character (like the ones shown on this page; technically, they are single-character strings, not letters). Most Python programmers
use single quotes to delimit their strings (but that's a preference, not a rule). If a string contains a single quote, double quotes can be used to
avoid the requirement to escape characters with a backslash (\), as most programmers find it's easiertoread " ' " than '\ ' '. You'll see
more examples of both quotes being used on the next two pages.

77

start stop list

Starting and Stopping with Lists

bject
Tollow along with the examples on this page (and the next) at your >>> prompt and
make sure you get the same output as we do.
. . . bj
We start by turning a string into a list of letters:
>>> book = "The Hitchhiker's Guide to the Galaxy" List

>>> booklist = list (book)
>>> booklist
ﬁ [lTl, lhl lel,] 1’ lHl, 'i', ltl, |c|’ lhl, 'h', lil, 'k',

TUY'ha |e| lrl Q lsl 1 1 lGl |u| lil |d| lel 1 1 ltl
S‘Ev‘ihg 4 ’ ‘t ’ 4 ’ 4 ’ 4 ’ 4 4

"‘{pa |o|’ ' l, , lhl, |e|’ ' l, |G|’ lal, |l|’ lal, |x|’ lyl]

:s:" l;[:hcn Note that the original string tontained a
th: Ii:/{:. single quote thavacter. Python is smart

enough to spot this, and surcounds the
single quote thavatter with double quotes.

The newly created list (called booklist above) is then used to select a range of
letters from within the list:

>>> booklist[0:3] € Select the first three objects
['T', 'h', 'e'] (letters) from the list.

>>> ''.join(booklist[0:3])

e &——— Turn the selected vange into a string (which
you learned how to do near the end of the
“panic.py” tode). The setond cxgmylc seleets
>>> ''.Jjoin(bocklist[=6:1) the last six ob\')cc{:s Lrom the list.
'Galaxy'

Be sure to take time to study this page (and the next) until you’re confident you

understand how each example works, and be sure to try out each example within
IDLE.

With the last example above, note how the interpreter is happy to use any of the
default values for start, stop, and step.

78 Chapter 2

Stepping with Lists

Here are two more examples, which show off the use of step with lists.

The first example selects all the letters, starting from the end of the list (that is, it is
selecting in reverse), whereas the second selects every other letter in the list. Note how
the step value controls this behavior:

>>> backwards = booklist[::-1]

>>> '' . join (backwards) kf’——“\\\\

"yxalaG eht ot ediuG s'rekihhctiH ehT"

data

object

object

object

object

object

List

Looks like gobblcdcgook,

doesn't it? But it is achually

the oviginal string reversed.

>>> every other = booklist[::2]
>>> ''.join(every other)
"TeHthie' ud oteGlx"

And this looks like gibberish! B
up from every second object

Two final examples confirm that it is possible to start and stop anywhere within the list
and select objects. When you do this, the returned data is referred to as a slice. Think
of aslice as a fragment of an existing list.

Both of these examples select the letters from booklist that spell the word
'Hitchhiker'. The first selection is joined to show the word 'Hitchhiker',
whereas the second displays 'Hitchhiker' in reverse:

>>> ".join(booklist[4:14])€r——\\gmcw££M
'Hitchhiker' word “Hitehhiker”.

>>> ''.join(booklist[13:3:-1])
'rekihhctiH'
Slice out the word “Uitehhiker”, but

do it in veverse order (ie, backward).

Slices are everywhere

The slice notation doesn’t just work with lists. In fact, you’ll find that you can slice any
sequence in Python, accessing it with [start: stop: step].

(letter)

ub “every_other” is 3 list made

starting from the fiest
and going to the last. Note: “start” and “stop” ave defaulted.

A "slice”

15

a J}ragment

of a list.

you are here »

79

panic some more

Putting Slices to Work on Lists

Python’s slice notation is a useful extension to the square bracket notation,

object | |4

. . , ; 3
and it is used in many places throughout the language. You'll see lots of uses object
of slices as you continue to work your way through this book. object
For now, let’s see Python’s square bracket notation (including the use of slices) object) | 1
in action. We are going to take the panic.py program from earlier and object) |0

N

refactor it to use the square bracket notation and slices to achieve what was

previously accomplished with list methods. List
Before doing the actual work, here’s a quick reminder of what panic.py
does.

H 4 4 H » o 4
Converting “Pon’t panic!” to “on tap This is
This code transforms one string into another by manipulating an existing list Pa"i"--?y)'

using the list methods. Starting with the string "Don’ t panic!", this code
produced "on tap" after the manipulations:

Disyla\/ the initial phrase = "Don't panic!"
state of the string — plist = list (phrase)
and list. print (phrase)

print (plist)

for 1 in range(4):
Use a eollection of list methods plist.pop ()

+o {:\ransfo\rm and maniyula{:c _) plist.pop(0)

the list of objects. plist.remove ("'")
plist.extend([plist.pop(), plist.pop()])

plist.insert (2, plist.pop(3))
. hrase = ''.join(plist)

Display the e _paras

vesulting state of —> | print(plist)

fhe string and list print (new_phrase)
e .

Here’s the output produced by this program when it runs within IDLE:

[] @ Python 3.4.3 Shell

>>> RESTART

>>>

Don't panic!

[IDI’ Iol' Inl' “Ill, Itl, 1 1 Ip ’ a ’ n ’ i ’ c ’ ‘l']
|aI’ T

on tap
>>>

/ Ln: 10/Col: 4
The s{:\ring “Don’t Fanid" is transformed into

[1 o 1 ’ 1 0o ' , R 1 t v ’
o “on {;ay" thanks to the list methods.

data

Putting Slices to Work on Lists, Continued

It’s time for the actual work. Here’s the panic.py code again, with the code
you need to change highlighted:

object | |4

object | | 3

object | |2

object

[}

phrase = "Don't panic!" object
plist = list (phrase)
print (phrase)
print (plist)
for i in range(4):
plist.pop ()
. plist.pop (0)
These ave the h:\;s ol e (77
0c¢°d‘7°“"cc plist.extend([plist.pop (), plist.pop()]1)
to thange plist.insert (2, plist.pop(3))
new phrase = ''.join(plist)
print (plist)
print (new _phrase)

_ qaoharpen your pencil
> b

List

For this exercise, replace the highlighted code above with new code that takes
advantage of Python’s square bracket notation. Note that you can still use list
methods where it makes sense. As before, you're trying to transform "Don’ t
panic!"into "on tap".Add your code in the space provided and call your
new program panic?2.py:

phrase = "Don't panic!"
plist = list (phrase)
print (phrase)

print (plist)

print (plist)
print (new phrase)

81

don’t panic again

— @G harpen your pencil

k SOIUtlon For this exercise, you were to replace the highlighted code on the previous page
with new code that takes advantage of Python’s square bracket notation. Note
that you can still use list methods where it makes sense. As before, you're trying
to transform "Don’ t panic!"into "on tap". You were to call your new
program panic2.py:

phrase = "Don't panic!"
plist = list(phrase)
print (phrase)

print (plist)

.. We S'Eﬁ""li:d b\/ slicing out the
new_phrase = " join(plistl]:3]) < word “on” from “plist”..

additional letter that

.. .then picked out caf’,h)
we needed: space, “t’, ‘@' and P

print (plist)
print (new phrase)

T wonder which of these
two programs—"panic.py"
or "panic2.py"—is better?

That’s a great question.

Some programmers will look at the code
in panic?2.py and, when comparing it
to the code in panic.py, conclude that
two lines of code is always better than
seven, especially when the output from
both programs is the same. Which is a
fine measurement of “betterness,” but not
really useful in this case.

To see what we mean by this, let’s take
a look at the output produced by both
programs.

82 Chapter 2

data

*—Tost DRIV

Use IDLE to open panic.py and panic?2.py in separate edit windows. Select the panic.
py window first, then press F5. Next select the panic2.py window, then press F5. Compare the
results from both programs in your shell.

[] @ panic.py - /Users/Paul/Desktop/_NewBook/ch02/panic.py (3.4.3)

N an‘nc.y\/" \
i phrase = "Don't panic!”

plist = list(phrase)
print (phrase)
print (plist)

for i in range(4):

plist.pop()
“PanicZ.Py" plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert (2, plist.pop(3))

ece panic2pyl new phrase = ''.join(plist) | —-—
print (plist)
phrase = "Don’'t panic!” print (new_phrase)
plist = list(phrase) |
print (phrase) ——
print (plist) : :
new_phrase = ''.join(plist[1:3])
new_phrase = new_phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])
print (plist)
print (new_phrase)
| e0e Python 3.4.3 Shell
>>> RESTART
>>>
Don't panic!
T\,\cou{‘)u‘tvroeudc.d » ['D., |°|' ‘n', "‘", ‘t., 1 I' |‘p|'r ‘a', ‘n., 'i', ‘c', |!|]
b\lvuhhihﬁ{'fhc Yanl{,.‘?\/—e ['0., |nr' 1 :’ 't', 'a', |pr]
program on tap
>>> RESTART
>>>
Thcou{zu‘tPVOdudcd by ??::t ?2?ic%n[min |tl 1] |p[|a[|nl LI |c[|![]
ruhhina hc ¢ anicz“ ”—; 1 I’ 1 l’ 1 l' “Ill, 1 I’ 1 l’ 1 l' 1 l, 1 I’ IJI'I' 1 l' 1 L]
program f PY [D, o, n, PR r P, 'a’, 'm’, i, ‘', 1]
on tap
>>> |

Notice how different these outputs are.

83

which panic?

Which Is Better? It Depends...

We executed both panic.py and panic2.py in IDLE to help us This is the

determine which of these two programs is “better.” output

Take a look at the second-to-last line of output from both programs: “‘;;:i“;‘f b\/
ie.py”...

>>> /
Don't panic!

['D', 'o" 'n', "'"’ 't', v " 'p', 'a" 'n', 'i" 'c', '!']
[lol Vn' v v 't' 'a' 'p']
14 14 14 14 14
on tap
>>> RESTART
>>>
Don't panic!
['D', 'o" 'n', "'"’ 't', v " 'p', 'a" 'n', 'i" 'c', '!']
['D', '0" 'n', "'"’ 't', |l " 'p', 'a" 'n', 'i" 'c', '!']
on tap
>>> L .wheveas this
ou Yu‘{-’ is \pro(},utcd
by ‘pamie-PY -
Although both programs conclude by displaying the string "on tap" 1
having first started with the string "Don’ t panic!"), panic2.py does
(having g
not change plist in any way, whereas panic.py does.
It is worth pausing for a moment to consider this.
Recall our discussion from earlier in this chapter called “What happened to
‘plist’?”. That discussion detailed the steps that converted this list:
S — — e The “panic.?\/"
135 15
o 1 2 3 & 5 s 1 & 9 o with this list..

into this much shorter list:

B -.and turned it into

oEm . v

- |

o

a

All those list manipulations using the pop, remove, extend, and insert
methods changed the list, which is fine, as that’s primarily what the list
methods are designed to do: change the list. But what about panic2.py?

84 Chapter 2

The

data

Slicing a List Is Nondestructive

The list methods used by the panic.py program to convert one string into
another were destructive, in that the original state of the list was altered object
by the code. Slicing a list is nondestructive, as extracting objects from an object
existing list does not alter it; the original data remains intact.

I 5 P

o | 2

object | |4

—_

object

S

N

The “panic2.py” object

(1] < promeam startes o

9 1o M with this list.

The slices used by panic2.py are shown here. Note that each extracts data
from the list, but does not change it. Here are the two lines of code that do all [The ¢tode

the heavy lifting, together with a representation of the data each slice extracts:

new_phrase ''".join(plist[1:3])
new_phrase = new_phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])

slices

nondestructive plist[1:3] @ | o || »
ot el

plist[5] .—)[__] plist[4] HE] plist[7] 0—)@ plist[6] 0—)@

5 5 1

) .
n [}
2 3 8 9

The “panieZ.py” -

program ended vp with > l D l
o

this list Gi.e. no thange)

So...which is better?

Using list methods to manipulate and transform an existing list does just that:
1t manipulates and transforms the list. The original state of the list is no longer

available to your program. Depending on what you’re doing, this may (or Llst metllO(I[s

may not) be an issue. Using Python’s square bracket notation generally does

not alter an existing list, unless you decide to assign a new value to an existing cl‘ange tlle state
index location. Using slices also results in no changes to the list: the original

data remains as it was. 0‘[a list, Wllel"eas

Which of these two approaches you decide 1s “better” depends on what you

are trying to do (and it’s perfectly OK not to like either). There 1s always usnlg square

more than one way to perform a C.omput%tlon,.and Python lists are ﬂex1ble l)raCl(ets an J Slices
enough to support many ways of interacting with the data you store in them.
We are nearly done with our initial tour of lists. There’s just one more topic (typlcauy) C[OCS not.

to introduce you to at this stage: lst iteration.

85

for loves

Pythown’s “for” Loop Understands Lists

. . . . (object) |4
Python’s for loop knows all about lists and, when provided with any list, knows -

where the start of the list is, how many objects the list contains, and where the ;
end of the list is. You never have to tell the for loop any of this, as it works it 2
out for itself.)
An example helps to illustrate. Follow along by opening up a new edit window 0

in IDLE and typing in the code shown below. Save this new program as
marvin.py, then press IS to take it for a spin:

E*CL“{-‘C H“S [] @ marvin.py - /Users/Paul/Deskiop/_NewBook/ch02/marvin.py (3.4.3)
small program...

paranoid_android = "Marvin”
~to produte thi letters = list(paranoid_android)
Produce this output for char in letters:
print('\t', char)
ece '

Python 3.4.3 (v3.4.3:9b73flc3e

[6GCC 4.2.1 (Apple Inc. build 5 Ln: 6/Col: 0
Type "copyright"”, "credits" or "license or more information.

List

>>> RESTART
>>>

M

a

r Each chavacter from the “letters” list is

v [S printed on its own line, preceded by a tab
| i thavatter (that's what the \t does).

n

>>>

Ln: 10|Col: O

Understanding marvin.py’s code O each ikevation

The first two lines of marvin.py are familiar: assign a string to a variable (called ~ this variable

paranoid android), then turn the string into a list of character objects vefers to the Q‘is is the list to
(assigned to a new variable called letters). turvent °b\)CLJC' iterate over.

It’s the next statement—the for loop—that we want you to concentrate on. J,

On ecach iteration, the for loop arranges to take each object in the letters for char in letters:

list and assign them one at a time to another variable, called char. Within the print('\t', char)
indented loop body char takes on the current value of the object being processed . —)
by the for loop. Note that the for loop knows when to start iterating, when to

stop iterating, as well as kow many objects are in the letters list. You don’t need £ cod

to worry about any of this: that’s the interpreter’s job. This block ot code

exetutes on eath iteration.

86

data

Pythown’s “for” Loop Understands Slices

. . . object | | 4
If you use the square bracket notation to select a slice from a list, the for loop “does
Y q P o 5
the right thing” and only iterates over the sliced objects. An update to our most recent object
program shows this in action. Save a new version of marvin.py asmarvin2.py, object) |2

then change the code to look like that shown below.

—

object

Of interest is our use of Python’s multiplication operator (*), which is used to object) | 0
control how many tab characters are printed before each object in the second and
third for loop. We use * here to “multiply” how many times we want tab to appear:

List

L oK) marvin2.py - /Users/Paul/Desktop/_NewBook/ch02/marvin2.py (3.4.3)

paranoid_android = "Marvin, the Paranoid Android"
letters = list(paranoid_android)
for char in letters[:6]:

[///’ { print('\t', char)
print ()

The fiest loop iterates for char in letters[-7:]:

over a slice of the fiest) zl(:;'nt(‘\t'*2, char)
six objects in the lis for char in letters[12:20]:
print(’'\t'*3, char) ~
1l

0@
>>>

Ln: 12|Col: O
T

BHednrp

The second loop iterates over a
slice of the last seven objeets in

n e Note how 2! inserts he third (and £inal) loop iterates
a ve Lab characters before cach —:vcr a slice from within the list,
g printed object. selecting the chavatters that spell
: v the word “Pavancid’- Note how
a 33" insevts three tab chavacters
: before each printed object.

P

a

r

a

n

o

i <—

d

>>> |

Ln: 118|Col: 4

you are here » 87

for loop slices

Marvin’s Slices in Petail

L . . . object) | 4
Let’s take a look at each of the slices in the last program in detail, as this
technique appears a lot in Python programs. Below, each line of slice code object) |3
1s presented once more, together with a graphical representation of what’s object

going on.

object

Before looking at the three slices, note that the program begins by assigning a
string to a variable (called paranoid android)and converting it to a list

_ List
(called letters):

[}

object

N

paranoid android = "Marvin, the Paranoid Android"
letters = list(paranoid_android)

0 lyz abr_s b 7 8 9 1o 1l 12 13 14 Is
Ietters._)lMHaMr,v i LJ.R” ”{Hh”_c__m P“a“r“al
Recall that you tan access any

slot in @ list using 3 Vosi‘l:ivc or % l i “ d ” ” A u n|d H L l q I i I’TI
ncgajcivc index value. We've °"l\/ 7 18 19 20 2 22 23 2% 25 26 27
chowing some of thenegstive ——>> || -lo 9 -8 -1 b 5 4 3 2 |

index values heve.

16
4

We’ll look at each of the slices from the marvin2 . py program and see what
they produce. When the interpreter sees the slice specification, it extracts the
sliced objects from letters and returns a copy of the objects to the for
loop. The original 1etters list is unaffected by these slices.

The first slice extracts from the start of the list and ends (but doesn’t include)
the object in slot 6:

for char in letters[:6]: letters[:6] .—)l M " a H v ’—v_l i
print('\t', char)

The second slice extracts from the end of the letters list, starting at slot —7
and going to the end of letters:

for chér in letters[-7:]: letters[-7:] @ 3 l A l i “ 4 ! A A A
print('\t'*2, char)
And finally, the third slice extracts from the middle of the list, starting at slot
12 and including everything up to but not including slot 20:
for char in letters[12:20]: .
print('\t'*3, char) Ietters[12:20].—)l P H & M rilaln l ° l i |d]

88 Chapter 2

data

Lists: Updating What We Know

Now that you’ve seen how lists and for loops interact, let’s quickly review
what you’ve learned over the last few pages:

%BUI.I.ET POINTS

= |ists understand the square bracket notation, = Unlike a lot of other programming languages,
which can be used to select individual objects Python lets you index into a list from either end.
from any list. Using —1 selects the last item in the list, -2 the

= Like a lot of other programming languages, second last, and so on.

Python starts counting from zero, so the first = |ists also provide slices (or fragments) of a list
object in any list is at index location 0, the by supporting the specification of start, stop,
second at 1, and so on. and step as part of the square bracket notation.

T can see myself putting lists to lots
of uses in my Python programs. But is there
anything lists aren't good at?

Lists are used a lot, but...

They are not a data structure panacea. Lists can be used in lots
of places; if you have a collection of similar objects that you
need to store in a data structure, lists are the perfect choice.

However—and perhaps somewhat counterintuitively—if the
data you’re working with exhibits some structure, lists can be a
bad choice. We'll start exploring this problem (and what you
can do about it) on the next page.

therejare no
Dumb Questions

Q,: Surely there’s a lot more to lists than this? Q: But what about sorting lists? Isn’t that important?

A: Yes, there is. Think of the material in this chapter as a quick A: Yes, itis, but let's not worry about stuff like that until we actually
introduction to Python’s built-in data structures, together with what need to. For now, if you have a good grasp of the basics, that’s all
they can do for you. We are by no means done with lists, and will be you need at this stage. And don’t worry: we’'ll get to sorting soon.
returning to them throughout the remainder of this book.

89

not a panacea

What’s Wrong with Lists?

When Python programmers find themselves in a situation where they need to
store a collection of similar objects, using a list is often the natural choice. After all,
we’ve used nothing but lists in this chapter so far.

Recall how lists are great at storing a collection of related letters, such as with the
vowels list:

vowels = ['a', 'e', 'i', 'o', 'u']
And if the data is a collection of numbers, lists are a great choice, too:

nums = [1, 2, 3, 4, 5]

In fact, lists are a great choice when you have a collection of related anythings.

But imagine you need to store data about a person, and the sample data you’ve
been given looks something like this: o ;

Ford Prefect Some data for

Name: You to play with
Gendex: Male . 1

. . Rcscavc Cr !
Octvpation \se Seven |

Home Planet: Deteloe |

On the face of things, this data does indeed conform to a structure, in that there
arc tags on the left and associated data values on the right. So, why not put this data
in a list? After all, this data is related to the person, right?

To see why we shouldn’t, let’s look at two ways to store this data using lists (starting
on the next page). We are going to be totally upfront here: both of our attempts
exhibit problems that make using lists less than ideal for data like this. But, as the
journey is often half the fun of getting there, we’re going to try lists anyway.

Our first attempt concentrates on the data values on the right of the napkin,
whereas our second attempt uses the tags on the left as well as the associated data
values. Have a think about how you’d handle this type of structured data using
lists, then flip to the next page to see how our two attempts fared.

90 Chapter 2

When Not to Use Lists

We have our sample data (on the back of a napkin) and we’ve decided to store
the data in a list (as that’s all we know at this point in our Python travels).

Our first attempt takes the data values and puts them 1in a list:

>>> personl = ['Ford Prefect', 'Male’,
'Researcher’', 'Betelgeuse Seven']

>>> personl

['Ford Prefect', 'Male', 'Researcher’,
'Betelgeuse Seven']

This results in a list of string objects, which works. As shown above, the shell
confirms that the data values are now in a list called personl.

But we have a problem, in that we have to remember that the first index
location (at index value 0) is the person’s name, the next is the person’s gender
(at index value 1), and so on. For a small number of data items, this is not

a big deal, but imagine if this data expanded to include many more data
values (perhaps to support a profile page on that Facebook-killer you’re been
meaning to build). With data like this, using index values to refer to the data
in the personl list is brittle, and best avoided.

Our second attempt adds the tags into the list, so that each data value is
preceded by its associated tag. Meet the person? list:

>>> person2 = ['Name', 'Ford Prefect’',

data

Does "person[1]"
refer to gender or
occupation? I can

never remember!

Q

Name: Ford Prefect

Gender: Male

Oceupation: Researther

Home Planet: Betelgeuse Seven

'Gender',

'Male', 'Occupation', 'Researcher', 'Home Planet',

'Betelgeuse Seven']
>>> person2

['Name', 'Ford Prefect', 'Gender', 'Male’,
'Occupation’', 'Researcher', 'Home Planet',

'Betelgeuse Seven']

This clearly works, but now we no longer have one problem; we have two.
Not only do we still have to remember what’s at each index location, but we
now have to remember that index values 0, 2, 4, 6, and so on are tags, while
index values 1, 3, 5, 7, and so on are data values.

Surely there has to be a better way to handle data with a structure like this?

There is, and it involves foregoing the use of lists for structured data like this.
We need to use something else, and in Python, that something else is called a
dictionary, which we get to in the next chapter.

If the data you
want to store has
an identifiable
structure, consider
using somet]ming
other than a list.

91

the code

Chapter 2’s Code, 1 of 2

vowels = ['a', 'e', 'i', 'o', 'u'] Thc;i\fs‘l:vcrsionofﬂ,c
word = "Milliways" vowels py .
for letter in word: 4/ *3)| % ths::m "t’?{' dls!?lays
if letter in vowels: Cpp). waf ound in the
o any word Milliways (ihtludina an
print (letter) duplicates). Y
vowels = ['a', 'e', 'i', 'o', 'u'l
N word = "Milliways"
The “VOWC‘SZ»YY ?rog\ra'ﬁ. found = []
added ctode that used a list for letter in word:
to avoid duyhca’cw This if letter in vowels:
program disylags the list of if letter not in found:
uMchVOWdS ound in the . found.append (letter)
d“NﬁmvmyJ- for vowel in found:
wov print (vowel)
vowels = ['a', 'e', 'i', 'o', 'u'l
word = input ("Provide a word to search for vowels: ") T%thhd th'ﬁhd)vusbn
found = []

for letter in word:
if letter in vowels:
if letter not in found:
found.append (letter)
for vowel in found:
print (vowel)

the vowels pProgram for

/ this chapter, “vawels%.‘;y",

disPlays the unique vowels

found in 3 word entered by
our user-

92

[£'s the best advice in the uv:':vcrfc: “?on’£
?anit!" This program, callﬁj\. ?agnl.:(-’\?\/a, ;
kes a strin t,on{',aining is advice and,
tiin;sa bunchao(: list methods, transforms —

ing i ina that
the string into another string Jc,'
dci;‘ib:?how the Head Fivst editors

prefer their beev: “on tap”-

Chapter 2

phrase = "Don't panic!"
plist = list (phrase)
print (phrase)

print (plist)

for i in range(4):

plist.pop()
plist.pop (0)
plist.remove ("'")
plist.extend([plist.pop (), plist.pop()])
plist.insert (2, plist.pop(3))

new phrase =
print (plist)
print (new phrase)

''".Join(plist)

Chapter 2’s Code, 2 of 2

data

phrase = "Don't panic!"
plist list (phrase)
print (phrase)

print (plist)

new phrase
new phrase

''".join(plist[1l:3])

print (plist)
print (new phrase)

new phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])

When it comes to manipulating lists, using
methods isn't the only game in Lown. The
“panieL.py’ program achieved the same end
using P\/{:hon’s square bracket notation.

The shortest Program in this chapter,

letters =
for char in letters:
print ('\t', char)

paranoid android = "Marvin"
list (paranoid android)

“v.narvih.P\/", demonstrated how well
(l:j‘{:s Play ,wi‘f:h P\/'l:hon’s “for” looP.
- {h:il:héon{: tell Marvin...if he hears
at his program is the shortest in
this chapter, it’ll make him even move

Paranoid than he already is).

The “marv;n(:nl.y\l" ?\’rogram
howed Python's square
iav:t,kc’c notation by using theee ——

dices to extract and display
Qragmcn{:s from a list
letters.

paranoid android = "Marvin, the Paranoid Android"
letters list (paranoid android)
for char in letters[:6]:
print ('\t', char)
print ()
for char in letters[-7:]:
print ("\t'*2, char)
print ()
for char in letters[12:20]:
print ("\t'*3, char)

you are here » 93

3 structured data

*
+ Working with Structured Data +

Lists are great, but T
sometimes heed more
structure in my life...

Python’s list data structure is great, but it isn’t a data panacea.
When you have truly structured data (and using a list to store it may not be the best
choice), Python comes to your rescue with its built-in dictionary. Out of the box, the
dictionary lets you store and manipulate any collection of key/value pairs. We look long
and hard at Python’s dictionary in this chapter, and—along the way—meet set and tuple,
too. Together with the list (which we met in the previous chapter), the dictionary, set, and
tuple data structures provide a set of built-in data tools that help to make Python and data

a powerful combination.

this is a new chapter

95

key:

A Dictionary Stores Key/Valuve Pairs

Unlike a list, which is a collection of related objects, the dictionary is used
to hold a collection of key/value pairs, where each unique key has a value
associated with it. The dictionary is often referred to as an associative array by
computer scientists, and other programming languages often use other names
for dictionary (such as map, hash, and table).

The key part of a Python dictionary is typically a string, whereas the
associated value part can be any Python object.

Data that conforms to the dictionary model is easy to spot: there are two
columns, with potentially multiple rows of data. With this in mind, take
another look at our “data napkin” from the end of the last chapter:

~and here’s the second

key#4 object

key#1 object

key#3 object

key#2 object

Dictionary

In C++ and Java, a
c[ictionary is known

Heve's one eolumn of data as "map,” whereas
eve 3
30\;,: ’ perl anJ Rl[l)y use
Name: Ford PchCCJC m tl‘e name 1‘3311‘
e“dcvt Ma\c ,
; ation: Researther Tha_s ‘avcows .
Octvyp Leloguse Seven | multiple v
Yome P\anc‘o Petely { {wo—co\umed
data on this
! na?k\n-

It looks like the data on this napkin is a perfect fit for Python’s dictionary.

Let’s return to the >>> shell to see how to create a dictionary using our
napkin data. It’s tempting to try to enter the dictionary as a single line of
code, but we’re not going to do this. As we want our dictionary code to be
easy to read, we’re purposely entering each row of data (i.e., each key/value
pair) on its own line instead. Take a look:

f— The assotiated data value

m The key
_[J;:C 3?3;0:5*7 >>> person3 = { 'Name': 'Ford Prefect',
e . ' V. v]
(Recall that we Gender': 'Male’',

met “\acrsonl
and “chsonln at
fhe end of the T

last ehapter) ey

96

'Occupation': 'Researcher’,
'"Home Planet': 'Betelgeuse Seven' }

K \/aluc

Make Dictionaries Easy to Read

It’s tempting to take the four lines of code from the bottom of the last page and
type them into the shell like this:

>>> person3 = { 'Name': 'Ford Prefect', 'Gender':
'Male', 'Occupation': 'Researcher', 'Home Planet':

'Betelgeuse Seven' }

Although the interpreter doesn’t care which approach you use, entering a
dictionary as one long line of code is hard to read, and should be avoided
whenever possible.

If you litter your code with dictionaries that are hard to read, other
programmers (which includes you in six months’ time) will get upset...so take the
time to align your dictionary code so that it is easy to read.

Here’s a visual representation of how the dictionary appears in Python’s
memory after either of these dictionary-assigning statements executes:

Keys — - Value

data

\% /

l Gender H Male

person3 @ >
K-? (Home Planet H Betelgeuse Seven

The “ycrsoﬁ" variable t Oceupation H Researther J

velfeventes the entive

dic{:ionar\/, whith is
made up o‘c a tolleetion
of key/value pairs.

This is a more complicated structure than the array-like list. If the idea behind
Python’s dictionary is new to you, it’s often useful to think of it as a lookup
table. The key on the left is used to look up the value on the right (just like you
look up a word in a paper dictionary).

Let’s spend some time getting to know Python’s dictionary in more detail. We’ll
begin with a detailed explanation of how to spot a Python dictionary in your
code, before talking about some of this data structure’s unique characteristics
and uses.

key#4
key#1
key#3
key#t2
Dictionary

97

it’s a dictionary

How to Spot a Dictionary in Code

L. key#4 object
Take a closer look at how we defined the person3 dictionary at the >>>

shell. For starters, the entire dictionary is enclosed in curly braces. Each key is key#1 | (object

enclosed in quotes, as they are strings, as is each value, which are also strings key#3 | (object

in this example. (Keys and values don’t have to be strings, however.) Each key

key#2 | (object

1s separated from its associated value by a colon character (:), and each key/

value pair (a.k.a. “row”) is separated from the next by a comma: Dictionary
A opening curly In {d"is dietionary, the values ave 3|
brate starts sﬁ ny °ch‘3+‘5’ so ﬂ“)’ ave entlosed
eath dictionary: [in quotes.
\ { ('"Name': 'Ford Prefect', Each key/value Pair is

separated {i
'Gender': 'Male’, / byPa Co:\ ma.rom the next
'Occupation': 'Researcher',

'Home Planet': 'Betelgeuse Seven' }

Each key is A elos
Chdloscdy‘m A tolon assot,ia{zcs eath braczsl:’?diwl);h
"(UOfcsv kc\i with its value. ea

did‘l:ionary.
As stated earlier, the data on this napkin maps nicely to a Python dictionary.

In fact, any data that exhibits a similar structure—multiple two-columned

rows—is as perfect a fit as you’re likely to find. Which is great, but it does

come at a price. Let’s return to the >>> prompt to learn what this price is:

>>> person3
Ask the shell {'Gender': 'Male', 'Name': 'Ford Prefect', 'Home

to display the ~ Planet': 'Betelgeuse Seven', 'Occupation': 'Researcher'}

ontents of the
;-,L{:,,\ar\,..‘ R -and there it is. All Lhe

kcy/va,"c Pairs are shown.
What happened to the insertion order?
Take a long hard look at the dictionary displayed by the interpreter. Did you
notice that the ordering is different from what was used on input? When you
created the dictionary, you inserted the rows in name, gender, occupation,

and home planet order, but the shell is displaying them in gender, name,
home planet, and occupation order. The ordering has changed.

What’s going on here? Why did the ordering change?

98 Chapter 3

Insertion Order Is NOT Maintained

Unlike lists, which keep your objects arranged in the order in which you
mserted them, Python’s dictionary does mot. This means you cannot assume
that the rows in any dictionary are in any particular order; for all intents and
purposes, they are unordered.

Take another look at the person3 dictionary and compare the ordering on
put to that shown by the interpreter at the >>> prompt:

>>> person3 = { 'Name': 'Ford Prefect',
'Gender': 'Male',

'Occupation’': 'Researcher',
'Betelgeuse Seven' }

'Home Planet':
>>> person3
{'Gender':

'Male', 'Name': 'Ford Prefect',

data

key#4 object

key#1 object

key#3 object

key#2 object

Dictionary

You insert your data

into 3 did‘,ionar\/ in
/ one order-...
lout Lhe interpreter

uses another
ordering.

'Home Planet':

'Betelgeuse Seven', 'Occupation': 'Researcher'}

If you’re scratching your head and wondering why you’d want to trust

your precious data to such an unordered data structure, don’t worry, as

the ordering rarely makes a difference. When you select data stored in a
dictionary, it has nothing to do with the dictionary’s order, and everything to
do with the key you used. Remember: a key 1s used to look up a value.

Dictionaries understand square brackets

Like lists, dictionaries understand the square bracket notation. However,
unlike lists, which use numeric index values to access data, dictionaries use
keys to access their associated data values. Let’s see this in action at the
interpreter’s >>> prompt:

Provide the key
between the squave

bratkets. >>> person3|['Name']

>>> person3|['Home Planet']
'Betelgeuse Seven'<1\§~_____
The data value

Use lceys to
access data in
a Jictionary.

assotiated with the

kt)’ is shown.

'Ford Prefect'Q:;\§~_——//////

When you consider you can access your data in this way, it becomes apparent

that it does not matter in what order the interpreter stores your data.

929

dictionaries love

Value Lookup with Square Brackets

Using square brackets with dictionaries works the same as with lists. However,
instead of accessing your data in a specified slot using an index value, with Python’s
dictionary you access your data via the key associated with it.

As we saw at the bottom of the last page, when you place a key inside a dictionary’s
square brackets, the interpreter returns the value associated with the key. Let’s
consider those examples again to help cement this idea in your brain:

key#4 object

key#1 object

key#3 object

key#2 object

Dictionary

Gender H Male

>>> person3['Home Planet']

Name H Ford Prefect

'Betelgeuse Seven'

Home Planet H Betelgeuse Seven

—— —

Octupation H Researcher J

| = >
>>> person3['Name'] Name +—)‘ Ford Prefect é

'Ford Prefect' t Home Planet j—){ Betelgeuse Seven I

Rictionary lookup is fast!

This ability to extract any value from a dictionary using its associated key is what
makes Python’s dictionary so useful, as there are lots of occasions when doing so is
needed—for instance, looking up user details in a profile, which is essentially what
we’re doing here with the person3 dictionary.

It does not matter in what order the dictionary is stored. All that matters is that the
interpreter can access the value associated with a key quickly (no matter how big
your dictionary gets). The good news is that the interpreter does just that, thanks to
the employment of a highly optimized kashing algorithm. As with a lot of Python’s
internals, you can safely leave the interpreter to handle all the details here, while
you get on with taking advantage of what Python’s dictionary has to offer.

100

Python’s dictionary

is implemented as a
resizeable hash table,
which has been heavily
optimized for lots of
special cases. As a result,
dictionaries perform
lookups very quickly.

Working with Dictionaries at Runtime

Knowing how the square bracket notation works with dictionaries is central to

understanding how dictionaries grow at runtime. If you have an existing dictionary,
you can add a new key/value pair to it by assigning an object to a new key, which you key#3 | (object
provide within square brackets. key#2 | (object

structured data

key#4 object

key#1 object

For instance, here we display the current state of the person3 dictionary, then add Dictionary
a new key/value pair that associates 33 with a key called Age. We then display the
person3 dictionary again to confirm the new row of data is successfully added:

Before the new
vow is added

Before ——>

>>> person3

{'Name': 'Ford Prefect', 'Gender': 'Male’,
'Home Planet': 'Betelgeuse Seven',
'Occupation’': 'Researcher'}

(Gender H Male l

[Oceupation H Researcher

Assi cnd (o LL
>>> per son3 | 'Age’] =33 %—— n::E:v';h{::bgc:fw(tc{hls o2

y to add a
of data to the dic{:ionary. o
>>> person3
{'Name': 'Ford Prefect', 'Gender': 'Male’,
'Age': 33, 'Home Planet': 'Betelgeuse Seven' ,S
'Occupation’': 'Researcher'} Abter Lhe e
w
row is added
Gender H Male
H"C,S;:;;{:;w Name H Ford Prefect
YOW O : _ \———
33 is assotiabed ——— | [ppe @] B Z Ao
with “Age”-
t Home Planet H Betelgeuse Seven
t Oceupation H Researther
you are here » 101

remembering

Recap: Pisplaying Found Vowels (Lists)

As shown on the last page, growing a dictionary in this way can be used

in many different situations. One very common application is to perform

a frequency count: processing some data and maintaining a count of what
you find. Before demonstrating how to perform a frequency count using a
dictionary, let’s return to our vowel counting example from the last chapter.

Recall that vowels3.py determines a unique list of vowels found in a word.
Imagine you’ve now been asked to extend this program to produce output
that details how many times each vowel appears in the word.

Here’s the code from Chapter 2, which, given a word, displays a unique list of
found vowels:

[] [] vowels3.py - /Users/Paul/Desktop/ _NewBook/ch02/vowels3.py (3.4.3)
vowels = ['a’', 'e', '1', 'o', 'u']
word = input("Provide a word to search for vowels: ")
)
This is “vowels2py) ——> found = []
. letter word:
h veports on
which vep vowels letter vowels:
the unique 4 letter found:
found in 3 word: found.append(letter)
vowel found:
print (vowel)
Ln: 11|Col: 0
Recall that we ran this code through IDLE a number of times:
[oK J Python 3.4.3 Shell
>>> RESTART
>>>
Provide a word to search for vowels: Milliways
i
a
>>> RESTART
>>>
Provide a word to search for vowels: Hitch-hiker
i
e
>>> RESTART
>>>
Provide a word to search for vowels: Galaxy
a
>>> RESTART
>>>
Provide a word to search for vowels: Sky
>>> |
Ln: 21|Col: 4

102

data

How Can a Dictionary Help Here?

I don't get it. The “vowels3.py" program
works just fine...so why are you looking to
fix something that isn't broken?

We aren’t.

The vowels3.py program does what it is
supposed to do, and using a list for this version
of the program’s functionality makes perfect
sense.

However, imagine if you need to not only list
the vowels in any word, but also report their
frequency. What if you need to know how many
times each vowel appears in a word?

\ If you think about it, this is a little harder to do
: with lists alone. But throw a dictionary into the

% r
¢ mix, and things change.
\ A Let’s explore using a dictionary with the vowels
5) program over the next few pages to satisfy this
new requirement.

therejare no
Dumb Questions

Q,: Is it just me, or is the word “dictionary” a strange name for something that’s basically a table?

A: No, it's not just you. The word “dictionary” is what the Python documentation uses. In fact, most Python programmers use the shorter
“dict” as opposed to the full word. In its most basic form, a dictionary is a table that has exactly two columns and any number of rows.

103

what’s the frequency, kenneth?

Selecting a Frequency Count Pata Structure

We want to adjust the vowels3.py program to maintain a count of how often each
vowel is present in a word; that is, what is each vowel’s frequency? Let’s sketch out

key#4 object

key#1 object

what we expect to see as output from this program: key#3 | (object
‘ key#2 | (object
W - - & 4
Given the word “hitehhiker', heve's the Dictionary
Lrequeney tount we expect 1o see:
a 0
¢ |
i 1 ﬂ
3 0 |
VVowels in the % 0o ’ Frequency
lefthand ’K/ tounts in the
tolumn _J\ i \’ighfhand
¢olumn

This output is a perfect match with how the interpreter regards a dictionary. Rather
than using a list to store the found vowels (as 1s the case in vowels3.py), let’s use
a dictionary instead. We can continue to call the collection found, but we need to
initialize it to an empty dictionary as opposed to an empty list.

As always, let’s experiment and work out what we need to do at the >>> prompt,
before committing any changes to the vowels3 . py code. To create an empty
dictionary, assign { } to a variable:

>>> found = {}
>>> found

{}

Let’s record the fact that we haven’t found any vowels yet by creating a row for each

Cu\rly braces on their own mean the

dic{:ionary stavts out cmF{:y-

vowel and initializing its associated value to 0. Each vowel is used as a key:

>>> found['a'] = 0
>>> found['e']
>>> found['i']

0 We've initialized all the
8 vowel tounts o O. Note
0

>>> found['o'] how insertion ordev is
>>> found['u'] not maintained (but

>>> found that dOCSn)‘{‘, matter
{'0': 0, 'u': 0, 'a': 0, 'i': 0, 'e': 0}/}‘"‘)'

All we need to do now is find a vowel in a given word, then update these frequency
counts as required.

104 Chapter 3

Updating a Frequency Counter

Before getting to the code that updates the frequency counts, consider how
the interpreter sees the found dictionary in memory after the dictionary
initialization code executes:

data

found @

Dictionary
- {0
t u ht 0
K ol
t 7, ht 0 A” the values
-) are initially
‘ e ht 0 set o O.

With the frequency counts initialized to 0, it’s not difficult to increment
any particular value, as needed. For instance, here’s how to increment e’s

frequency count:

>>> found
{'o': 0, 'u':
>>> found['e']
>>> found
{'o': 0, 'i':

0,

'a': 0, 'i':
found['e'] +

0, 'a': 0, 'u':

Ever\/{;hina
is O.
0, 'e': 0} J
1 = Intrement ¢’s
Coun'l:.
0, 'e':

~

1}
6\ The dictionary has been
updated. The value

w.»

assotiated with ‘¢’ has

L gl

been intremented.

> o

found @

{0

> o

—_— e —— ———
(3]

o

L gl

Code like that highlighted above certainly works, but having to repeat
found['e'] on either side of the assignment operator gets very old, very
quickly. So, let’s look at a shortcut for this operation (on the next page).

105

plus

Updating a Frequency Counter, v2.0

Having to put found['e'] on either side of the assignment operator
(=) quickly becomes tiresome, so Python supports the familiar +=
operator, which does the same thing, but in a more succinct way:

>>> found['e'] += 1 <£—
>>> found

{'o': 0, '"i': 0, '"a': 0, 'u': 0, 'e':

At this point, we’ve incremented the value associated with the e key twice,
so here’s how the dictionary looks to the interpreter now:

Intrement ¢'s
tount (onte more).

key#4 object

key#1 object

key#3 object

key#2 object

Dictionary

2} &—
The dic{:ionary

is updated
again.

> o |

> o |
found.—)t +_)to,
N

[> 2]

|

o
"
a
i

Thanks to the += opevator,
‘Jc)hc value assotiated with the
e key has been intremented

onte movre.
ﬂ]ere]gxe no o
Dumb Questions
Q: Does Python have ++? Q: Is there a handy list of operators?

AZ No...which is a bummer. If you're a fan of the ++ increment A: Yes. Head over to https://docs.python.org/3/reference/lexical_
operator in other programming languages, you'll just have to get used analysis.htmi#operators for a list, and then see https://docs.python.

to using += instead. Same goes for the —— decrement operator: org/3/library/stdtypes.html for a detailed explanation of their usage in
Python doesn’t have it. You need to use —= instead. refation to Python’s built-in types.

106

https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

Iterating Over a Dictionary

At this point, we’ve shown you how to initialize a dictionary with zeroed
data, as well as update a dictionary by incrementing a value associated
with a key. We’re nearly ready to update the vowels3.py program to
perform a frequency count based on vowels found in a word. However,
before doing so, let’s determine what happens when we iterate over a
dictionary, as once we have the dictionary populated with data, we’ll
need a way to display our frequency counts on screen.

You’d be forgiven for thinking that all we need to do here is use the
dictionary with a for loop, but doing so produces unexpected results:

We itevate over the />_>?) for kv in found:

dictionary in H\c,usual print (kv)
way, using 8 “ or" |o<)>,‘>.
Heve, we've using ‘kv' as
shorthand for “kc\// value
paiv” (but could've used
any vaviable name).

The iteration worked, but

this isnt what we wevre
< expecting. Where have the

frequeney tounts gone?

D e ® O

Something's really not right
with this output. The keys are
being displayed, but not their

associated values. What gives?

structured data

key#4

object

key#1

object

key#3

object

key#2

object

This ou{:\?u‘l: is ov\l\/ showing
the keys.-

Dictionary

you are here »

\&\ Flip the page to learn what
happened to the values.

107

k and

Iterating Over Keys and Values

en you iterated over a dictionary with your for loo e interpreter on
When you iterated dictionary with your for loop, the interpret ly
processed the dictionary’s keys.

To access the associated data values, you need to put each key within square
brackets and use it together with the dictionary name to gain access to the
values associated with the key.

The version of the loop shown below does just that, providing not just the
keys, but also their associated data values. We’ve changed the suite to access
each value based on each key provided to the for loop.

As the for loop iterates over each key/value pair in the dictionary, the
current row’s key is assigned to k, then found [k] is used to access its
associated value. We’ve also produced more human-friendly output by
passing two strings to the call to the print function:

>>> for k in found:
print(k, 'was found', found[k],

was found 0 time(s).
was found 0 time(s).
was found 0 time(s).
was found 0 time (s).
was found 2 time(s).

O & ® O

If you are following along at your >>> prompt and your output is ordered
differently from ours, don’t worry: the interpreter uses a random internal
ordering as you’re using a dictionary here, and there are no guarantees
regarding ordering when one is used. Your ordering will likely differ from
ours, but don’t be alarmed. Our primary concern is that the data is safely
stored in the dictionary, which it is.

The above loop obviously works. However, there are two points that we’d like
to make.

Firstly: it would be nice if the output was ordered a, e, i, o, u, as opposed to
randomly, wouldn’t it?

Secondly: even though this loop clearly works, coding a dictionary iteration in
this way is not the preferred approach—most Python programmers code this
differently.

Let’s explore these two points in a bit more detail (after a quick review).

108

key#4
key#1
key#3
key#t2
Dictionary

] . w,”
We've using k” 4o vepresent

the kcy, and “‘Found[kJ" +o

aceess the value.

G T—r

'time(s) ."')

This is move like it. The keys and the
< values ave being protessed by the loop and

displayed on streen.

data

Dictionaries: What We Already Know

Here’s what we know about Python’s dictionary data structure so far:

%BUL[ET POINTS

= Think of a dictionary as a collection of rows, with each
row containing exactly two columns. The first column
stores a key, while the second contains a value.

colon.

m Each row is known as a keyl/value pair, and a dictionary = Accessing data in a dictionary uses the square bracket
can grow to contain any number of key/value pairs. Like notation. Put a key inside square brackets to access its
lists, dictionaries grow and shrink on demand.

= Adictionary is easy to spot: it's enclosed in curly braces, ® Python’s for loop can be used to iterate over a
with each key/value pair separated from the next by a
comma, and each key separated from its value by a

= |nsertion order is not maintained by a dictionary. The
order in which rows are inserted has nothing to do with
how they are stored.

associated value.

dictionary. On each iteration, the key is assigned to the
loop variable, which is used to access the data value.

Specifying the ordering of a dictionary on output

We want to be able to produce output from the for loopin a, e, i, 0, u
order as opposed to randomly. Python makes this trivial thanks to the
inclusion of the sorted built-in function. Simply pass the found dictionary
to the sorted function as part of the for loop to arrange the output

alphabetically:

>>> for k in sorted(found) :

was
was
was
was
was

& 0 H 0w

print (k,

found 0
found 2
found 0
found 0
found 0

time (s) .
time (s) .
time (s) .
time (s) .
time (s) .

'was found',6\found[k], 'time(s).')

[t's a small change 4o the loop’s code, but..

it packs quite the punch. Look:
/ is sorted in 3, ¢, i,Fo, W’ orzocr. e et

That’s point one of two dealt with. Next up 1s learning about the approach
that most Python programmers prefer over the above code (although the
approach shown on this page is often used, so you still need to know about it).

109

the items

Iterating Over a Dictionary with “items”

We’ve seen that it’s possible to iterate over the rows of data in a dictionary using this
code:

>>> for k in sorted(found) :
print(k, 'was found', found[k], 'time(s).')

was found 0 time(s).
was found 2 time(s).
was found 0 time (s).
was found 0 time(s).
was found 0 time(s).

& 0O 0O p

Like lists, dictionaries have a bunch of built-in methods, and one of these is the

items method, which returns a list of the key/value pairs. Using items with for is
often the preferred technique for iterating over a dictionary, as it gives you access to the
key and the value as loop variables, which you can then use in your suite. The resulting
suite is easier on the eye, which makes it easier to read.

Here is the items equivalent of the above loop code. Note how there are now fwo
loop variables in this version of the code (k and v), and that we continue to use the We invoke the

“tems method

sorted function to control the output ordering: " »
on ’t\'\c ‘co\lhd

§ >>> for k, v in sorted(found.items()): dictionary.

The “items A print(k, 'was found', v, 'time(s).')

mC‘H’\Od PaSSCS

back two loop .

vaviables. a was found 0 time(s).
e was found 2 time(s).
) } CSame ou‘{:"u{l
i was found 0 time(s). < as before... ~-but this code is so
o was found 0 time(s). muth easier 1o vead.
u was found 0 time(s).

therejare no o
Dumb Questions

Q: Why are we calling sorted again in the second loop? The first loop arranged the dictionary in the ordering we want, so this
must mean we don’t have to sort it a second time, right?

A: No, not quite. The sorted built-in function doesn’t change the ordering of the data you provide to it, but instead returns an ordered
copy of the data. In the case of the £ound dictionary, this is an ordered copy of each key/value pair, with the key being used to determine
the ordering (alphabetical, from A through Z). The original ordering of the dictionary remains intact, which means every time we need to iterate
over the key/value pairs in some specific order, we need to call sorted, as the random ordering still exists in the dictionary.

110

structured data

1 %;;;f) Frequency Count Magnets

— 0

Detide which tode
magnet goes in eath
of the dashed-line
lotations to tveate
“VowelsA -?‘/"-

Wheve do all these

90? Be caveful: not —
all these maghc{'ﬁ are

needed.

Having concluded our experimentation at the >>> prompt, it's now time

to make changes to the vowe1ls3.py program. Below are all of the code
snippets we think you might need. Your job is to rearrange the magnets to
produce a working program that, when given a word, produces a frequency
count for each vowel found.

vowels = ['a', 'e', 'i', 'o', 'u'l

word = input ("Provide a word to search for vowels: ")

for letter in word:

if letter in vowels:

print (, 'was found', , 'time(s).")

found['e’

found = {} found['i'; -
found['o']
found['uv]

I found[letter] '

Once you've placed the magnets where you think they should go, bring
vowels3.py into IDLE’s edit window, rename it vowels4.py, and then
apply your code changes to the new version of this program.

you are here »

111

how many vowels

Frequency Count Magnets Solution

Having concluded our experimentation at the >>> prompt, it was time to
make changes to the vowe1s3.py program. Your job was to rearrange the

magnets to produce a working program that, when given a word, produces
a frequency count for each vowel found.

Once you'd placed the magnets where you thought they should go,
you were to bring vowels3.py into an IDLE’s edit window, rename it This is the

vowels4.py, and then apply your code changes to the new version of “Vowcls‘\'.‘;\/"
this program. Program.
vowels = ['a', 'e', 'i', 'o', 'u'l
C\rcaJcc an CM\7£\[word = input ("Provide a word to search for vowels: ")

d'L{ionaY‘y-
l \? | found = {} ',

Initialize the value

assotiated with eath ——>
of the keys (each

vowel) 4o O.

Inerement the value
............... veferred b
__ foundlletter]” by one.

for letter in word:
if letter in vowels:
\\£ » ‘OO
As the “Yor loop l found[letter] ' I 4= 1 '

is using khe “ttems’

mC‘H’\OdJ we need

i ﬁ k, v ; found.items () . Invoke the
e YVO‘“d‘“:;:“’ZJ:"? For -- 10 sorted l#) “items” method

vaviables,

Jd\c kC\/ and “V" ‘(:0" print('was found' , 'time(s) .") ;:ﬂétiar?lz‘od
+he value. access cach vou
t/w J of data with
The key and the value

eath i'&cra{:")
ave used to eveate ion
eath output message-

These magnets m
weven't needed — 2 I

found = []

112 Chapter 3

=0

— TasT Drive

data

Let's take vowels4 .py for a spin. With your code in an IDLE edit window, press F5 to see how it

performs:

vowelsd.py - /Users/Paul/Desktop/_NewBook/ch02/vowelsd.py (3.4.3)

vowels = [’
word = input(“Provide a word to search for vowels: ")

a‘! |e|’ niu' 101' nuul

The “vowelsdpy'—> found = {}
code found['a’'] = 0
found['e’'] = 0
found['i'] = 0
found['0'] = 0
We van the tode three found['u’'] = 0
. how well i
times to see how for letter in word:
Vﬂ4orm$ if letter in vowels:
found[letter] += 1
for k, v in sorted(found.items()):
print(k, 'was found', v, 'time(s).’)
[] [] Python 3.4.3 Shell
>>> RESTART
>>>

EOHON

>>>

Provide a word to search for vowels: hitch-hiker
was found 0 time(s).
was found 1 time(s).
was found 2 time(s).
was found 0 time(s).
was found 0 time(s).

>>>

>>>

was found 3 time(s).
was found 0 time(s).
u was found 1 time(s).

RESTART

Provide a word to search for vowels: life, the univ/arse, and everything
a was found 1 time(s).
e was found 6 time(s).
i
o

These three “runs”

€ produte the output we
expect them to.

>>>

>> |

was found 0 time(s).

RESTART

Provide a word to search for vowels: sky
a was found 0 time(s).
e was found 0 time(s).
i was found 0 time(s).
o was found 0 time(s).
u
b-S

T like where this is going.

But do T really need to

be told when a vowel isn't
found?

113

no more

Just How Dynawmic Are Dictionaries?

The vowels4.py program reports on all the found vowels, even when they
aren’t found. This may not bother you, but let’s imagine that it does and you
want this code to only display results when results are actually found. That s,
you don’t want to see any of those “found 0 time(s)” messages.

How might you go about solving this problem?

Python's dictionary is dynamic, right? So,

all we have to do is remove those five lines
that initialize each vowel's frequency count?
With those lines gone, only found vowels will be
counted, right?

That sounds like it might work.

We currently have five lines of code near

the start of the vowels4.py program

that we’ve included in order to nitially set
each vowel’s frequency count to 0. This
creates a key/value pair for each vowel, even
though some may never be used. If we take
those five lines away, we should end up only
recording frequency counts for found vowels,
and ignore the rest.

gnore the This is the “vowclsS_Fy"
Let’s give this idea a try. tode with the initialization

tode removed.

J

[] @ vowelss.py - /Users/Paul/Desktop/_NewBook/ch03/vowels5.py (3.4.3)

Take the code in vowels4.py
and save it as vowels5.py.
Then remove the five lines of
initialization code. Your IDLE
edit window should look like
that on the right of this page.

114

vowels = ['a’', 'e', 'i', 'o', 'u']
word = input(“Provide a word to search for vowels: ")

found = {}

for letter in word:
if letter in vowels:
found[letter] += 1

for k, v in sorted(found.items()):
print(k, 'was found', v, 'time(s).’)

Ln: 13|Col: 0

=08

data

—Tost DRIve

You know the drill. Make sure vowels5.

py isin an IDLE edit window, then press F5 to run your

program. You'll be confronted by a runtime error message:

[] @ Python 3.4.3 Shell

>>> RESTART
>>>

Provide a word to search for vowels: hitchhiker

Traceback (most recent call last):
File "/Users/Paul/Desktop/_NewBook/
found[letter] += 1

] '

ch03/vowels5.py", line 9, in <module>

KeyError: 'i
p>>
Ln: 11|Col: O
It's clear that removing the five lines of initialization code wasn’t the way to go here. But why has this
This tant happened? The fact that Python’s dictionary grows dynamically at runtime should mean that this code
be good- cannot crash, but it does. Why are we getting this error?

Dictionary keys must be initialized

Removing the initialization code has resulted in a runtime error, specifically
a KeyError, which is raised when you try to access a value associated with

a nonexistent key. Because the key can’t be found, the va
can’t be found either, and you get an error.

Does this mean that we have to put the initialization cod
1s only five short lines of code, so what’s the harm? We ¢
but let’s think about doing so for a moment.

Imagine that, instead of five frequency counts, you have

track a thousand (or more). Suddenly, we have /lots of initialization code. We

could “automate” the initialization with a loop, but we’d

large dictionary with lots of rows, many of which may end up never being

used.

If only there were a way to create a key/value pair on the fly, just as soon as

we realize we need it.

I wonder does the
operator work with
dictionaries?

we n

e

Geek Bits

lue associated with it

An alternative approach to
handling this issue is to deal
with the run-time exception
raised here (which is a

“KeyError”in this example).
We're holding off talking
about how Python handles
run-time exceptions until a
later chapter, so bear with
us for now.

e back in? After all, it
an certainly do this,

a requirement to

still be creating a

in
That’s a great question.

We first met in when checking lists for a value.
Maybe in works with dictionaries, too?

Let’s experiment at the >>> prompt to find out.

115

check with in

Avoiding KeyErrors at Runtime

key#4 object

As with lists, it is possible to use the in operator to check whether a key exists in a

dictionary; the interpreter returns True or False depending on what’s found. key#1 | (object

key#3 object

Let’s use this fact to avoid that KeyError exception, because it can be annoying
when your code stops as a result of this error being raised during an attempt to key#2 | (object

populate a dictionary at runtime.

Dictionary
To demonstrate this technique, we’re going to create a dictionary called fruits,
then use the in operator to avoid raising a KeyError when accessing a
nonexistent key. We start by creating an empty dictionary; then we assign a
key/value pair that associates the value 10 with the key apples. With the row
of data in the dictionary, we can use the in operator to confirm that the key
apples now exists:
>>> fruits = {}
{ } . .
>>> fruits['apples'] = 10 T’"S Is ?“ as expected. The value
S>> fruits &— lsh:::?clafcd \lrl;h the key, and
< .
{'apples': 10} use the 'ffi’h:":f’c":‘{:”’é’: V:'CE zc
- - * To Chet
>>> 'apples' in fruits the key's existence. or

True k/

Before we do anything else, let’s consider how the interpreter views the fruits
dictionary in memory after executing the above code:

The “apples” key

fruits @=—————>> l apples .—)l lo <— is assotiated with

the value 0.

therejare no
Dumb Questions

Qj | take it from the example on this page that Python uses the constant value True for true? Is there a False, too, and does
case matter when using either of these values?

A: Yes, to all those questions. When you need to specify a boolean in Python, you can use either True or False. These are constant
values provided by the interpreter, and must be specified with a leading uppercase letter, as the interpreter treats t rue and false as
variable names, not boolean values, so care is needed here.

116 Chapter 3

Checking for Mewmbership with “in”

Let’s add in another row of data to the fruits dictionary for bananas and
see what happens. However, instead of a straight assignment to bananas,
(as was the case with apples), let’s increment the value associated with
bananas by 1 if it already exists in the fruits dictionary or, if it doesn’t
exist, let’s initialize bananas to 1. This is a very common activity, especially
when you’re performing frequency counts using a dictionary, and the logic we
employ should hopefully help us avoid a KeyError.

fruits @3 l_aipl_es_)—), o |

In the code that follows, the in operator in conjunction with an if statement

avoids any slip-ups with bananas, which—as wordplays go—is pretty bad
(even for us):

>>> if 'bananas' in fruits:
fruits['bananas'] += 1
else:

data

key#4 object

key#1 object

key#3 object

key#2 object

Dictionary

BC‘COV‘C 'H\C

[0
bananas” tode vuns

We cheek 1o see if the “bananas’ key

fruits ['bananas'] =1 \ is in the dit‘{:ionar\/, and as it isn"{:, we
nitialize its value to I Critically, we

>>> fruits
{'bananas': 1, 'apples': 10}

L We've set the “bananas” value to 1.

The above code changes the state of the fruits dictionary within the
interpreter’s memory, as shown here:

fruits @ > ML‘_O—_'
- [bonaras @—>] |

Aftec the “bananas

tode vuns.

As expected, the fruits dictionary has grown by one key/value pair, and
the bananas value has been initialized to 1. This happened because the
condition associated with the 1 £ statement evaluated to False (as the key
wasn’t found), so the second suite (that is, the one associated with else)
executed instead. Let’s see what happens when this code runs again.

avoid any possibility of a “KcyEwor".

k

Geek Bits -

If you are familiar with the ?:
ternary operator from other
languages, note that Python
supports a similar construct. You
can say this:

x =10 if y > 3 else 20

to set x to either 10 or 20
depending on whether or not the
value of y is greater than 3. That
said, most Python programmers
frown on its use, as the equivalent
if... else... statements
are considered easier to read.

117

one more time

Ensuring Initialization Before Use

If we execute the code again, the value associated with bananas should now
be increased by 1, as the 1 £ suite executes this time due to the fact that the
bananas key already exists in the fruits dictionary:

(e —]
fruits @ >]

To run this code again, press Ctrl-P (on a Mac) or Alt-P (on Linux/Windows) to
cycle back through your previously entered code statements while at IDLE’s >>>
prompt (as using the up arrow to recall input doesn’t work at IDLE’s >>> prompt).
Remember to press Enter fwice to execute the code once more:

>>> if 'bananas' in fruits:

key#4
key#1
key#3
key#t2
Dictionary

ui‘a_""’_s_*_) | | < Bcfo\rc ‘l:hc “bananas"

tode vuns (agaih)

This time around, the “bananas” key

fruits['bananas'] += 1 << does exist in the dictionary, so we

else: increment its value by I. As before,
fruits['bananas'] =1 our use of “if” and in” together

S“'DF a “KeyEr\ro\r" exteption Leom

>>> fruits
{'bananas': 2, 'apples': 10}

"

U .
We've intveased the “bananas”

value by l.

As the code associated with the 1 f statement now executes, the value associated
with bananas is incremented within the interpreter’s memory:

fruits @ >]
(e l— ("

This mechanism is so common that many Python programmers shorten these four

lines of code by inverting the condition. Instead of checking with in, they use
not in. This allows you to initialize the key to a starter value (usually 0) if it isn’t
found, then perform the increment right after.

Let’s take a look at how this mechanism works.

118 Chapter 3

erashing this tode.

AH‘,CY the “bananas
tode vuns, the value
assotiated with
“bananas. has intveased:

data

Substituting “not in” for “in”

At the bottom of the last page, we stated that most Python programmers refactor
the original four lines of code to use not in instead of in. Let’s see this in key#1 | (object
action by using this mechanism to ensure the pears key is set to 0 before we try key#3 | (object
to increment its value:

key#4 object

key#2 object
>>> if 'pears' not in fruits: Dictionary

fruits['pears'] = 0 <— Initialize Gif needed).

>>> fruits['pears'] += 1 $;\§\\~__——_—__—’//|mnmm£

>>> fruits
{'bananas': 2, 'pears': 1, 'apples': 10}

These three lines of code have grown the dictionary once more. There are now
three key/value pairs in the fruits dictionary:

[B]
fruit Fi e — After the two
ruts @——> [_baras §—>| 2 s of “peant
:;:—l 10 | tode vuns

The above three lines of code are so common in Python that the language
provides a dictionary method that makes this i f/not in combination more
convenient and less error prone. The setdefault method does what the two-
line 1f/not in statements do, but uses only a single line of code.

Here’s the equivalent of the pears code from the top of the page rewritten to
use setdefault:

>>> fruits.setdefault('pears', 0) < __ Iitialize (if needed).
>>> fruits['pears'] +=1

>>> fruits

{'bananas': 2, 'pears': 2, 'apples': 10} [ntvement.

The single call to setdetfault has replaced the two-line

if/not in statement, and its usage guarantees that a key Ml 7) l

is always initialized to a starter value before it’s used. Any

possibility of a KeyError exception is negated. The current ~ fruits @3 M‘ 2
state of the fruits dictionary is shown here (on the right) to P ————)
confirm that invoking setdefault after a key already exists M‘ lo |
has no effect (as is the case with pears), which is exactly '
what we want in this case.

long live

Putting the “setdefauvlt” Method to Work

Recall that our current version of vowels5. py results in a runtime error,
specifically a KeyError, which is raised due to our code trying to access the
value of a nonexistent key:

key#4 object

key#1 object

key#3 object

key#2 object

[] [] vowelsb.py - /Users/Paul/Desktop/_NewBook/ch03/vowels.py (3.4.3)
Dictionary
vowels = ['a’, 'e', "i', ‘o', 'u']
m word = input("Provide a word to search for vowels: ")
This ¢ode
produces found = {}
this ervor. for letter in word:
if letter in vowels:
found[letter] += 1
for k, v in sorted(found.items()):
print(k, 'was found', v, ‘time(s).’)
e0e Python 3.4.3 Shell
>>> RESTART
22>

Provide a word to search for vowels: hitchhiker
Traceback (most recent call last):

found[letter] += 1

KeyError: '1
pb>>

File "/Users/Paul/Desktop/_NewBook/ch03/vowels5.py", line 9, in <module>

Ln: 11|Col: 0

From our experiments with fruits, we know we can call setdefault
as often as we like without having to worry about any nasty errors. We

know setdefault’s behavior is guaranteed to initialize a nonexistent key
to a supplied default value, or to do nothing (that is, to leave any existing
value associated with any existing key alone). If we invoke setdefault
immediately before we try to use a key in our vowels5.py code, we are
guaranteed to avold a KeyError, as the key will either exist or it won’t.
Either way, our program keeps running and no longer crashes (thanks to our
use of setdefault).

Within your IDLE edit window, change the first of the vowels5.py
program’s for loops to look like this (by adding the call to setdefault),
then save your new version as vowels6.py:

Use "setdefault”
to llelp avoid
the "KeyError”

exception.

for letter in word:
if letter in vowels:
found.setdefault (letter, 0)
found[letter] +=1

<—

L —""N

A single line of tode

120

can often make all
the difference.

data

N
- Q’v
70"

o —

—Test Drive

With the most recent vowels6.py program in your IDLE edit window, press F5. Run this version a
few times to confirm the nasty KeyError exception no longer appears.

L ey] Python 3.4.3 Shell
>>> RESTART
>>>

Provide a word to search for vowels: hitch-hiker
e was found 1 time(s).
i was found 2 time(s).

>>> RESTART
>>>
Provide a word to search for vowels: life, the universe, everything

a was found 1 time(s).
e was found 6 time(s).
i was found 3 time(s).

u was found 1 time(s).
>>> |

\ Ln: 23|Col: 4
The use of the setdefault method has solved the KeyError problem \
we had with our code. Using this technique allows you to dynamically grow a This is looki
dictionary at runtime, safe in the knowledge that you’ll only ever create a new 1§ looking good. The

{
(KC\/EW'OV" Is 9one.

key/value pair when you actually need one.

When you use setdefault in this way, you never need to spend time
initializing all your rows of dictionary data ahead of time.

Dictionaries: updating what we already know

Let’s add to the list of things you now know about Python’s dictionary:

%BUI.I.ET POINTS

= By default, every dictionary is unordered, as insertion = Trying to access a nonexistent key in an existing
order is not maintained. If you need to sort a dictionary dictionary results in a KeyError. When a
on output, use the sorted built-in function. KeyError 0occurs, your program crashes with a

. . runtime error.
= The items method allows you to iterate over a

dictionary by row—that is, by key/value pair. On each = You can avoid a KeyError by ensuring every key
iteration, the i tems method returns the next key and in your dictionary has a value associated with it before
its associated value to your for loop. you try to access it. Although the in and not in

operators can help here, the established technique is to
use the setdefault method instead.

121

how much

Aren’t Dictionaries (and Lists) Enough?

We've been talking about data structures
for ages...how much more of this is there?
Surely dictionaries—together with lists—
are all T'll need most of the time?

Dictionaries (and lists) are great.

But they are not the only show in town.

Granted, you can do a lot with dictionaries and
lists, and many Python programmers rarely

need anything more. But, if truth be told, these
programmers are missing out, as the two remaining
built-in data structures—set and tuple—are useful
in specific circumstances, and using them can greatly
simplify your code, again in specific circumstances.

The trick is spotting when the specific circumstances
occur. To help with this, let’s look at typical examples
for both set and tuple, starting with set.

thereqare no R
Dumb Questions

Q,: Is that it for dictionaries? Surely it's common for the value part of a dictionary to be, for instance, a list or another dictionary?

A: Yes, that is a common usage. But we're going to hang on until the end of this chapter to show you how to do this. In the meantime, let
what you already know about dictionaries sink in...

122

Sets Don't Allow Duplicates

Python’s set data structure is just like the sets you learned about in school: it has
certain mathematical properties that always hold, the key characteristic being that
duplicate values are forbidden.

Imagine you are provided with a long list of all the first names for everyone in a large
organization, but you are only interested in the (much smaller) list of unique first
names. You need a quick and foolproof way to remove any duplicates from your long
list of names. Sets are great at solving this type of problem: simply convert the long
list of names to a set (which removes the duplicates), then convert the set back to a list
and—ta dal—you have a list of unique first names.

Python’s set data structure is optimized for very speedy lookup, which makes using a
set much faster than its equivalent list when lookup is the primary requirement. As lists
always perform slow sequential searches, sets should always be preferred for lookup.

Spotting sets in your code

Sets are easy to spot in code: a collection of objects are separated from one another by
commas and surrounded by curly braces.

data

Set

For example, here’s a set of vowels: /—- Sets start and end with a Cu\r|\/ brate. \

>>> vowels = { 'a', 'e', 'e', 'i',

>>> vowels \l\
Chetk out the ordering, {'e', 'u', 'a', 'i', 'o'}

Objcc{:s are separated
rom one another b\/ a

[t's Lhangcd Lrom what was

oviginally insevted, and the
duplicates are gone oo.

The fact that a set is enclosed in curly braces can often result in your brain mistaking a
set for a dictionary, which 1s also enclosed in curly braces. The key difference 1s the use
of the colon character (:) in dictionaries to separate keys from values. The colon never
appears in a set, only commas.

In addition to forbidding duplicates, note that—as in a dictionary—insertion order

1s not maintained by the interpreter when a set is used. However. like all other data
structures, sets can be ordered on output with the sorted function. And, like lists and
dictionaries, sets can also grow and shrink as needed.

Being a set, this data structure can perform set-like operations, such as difference,
intersection, and union. To demonstrate sets in action, we are going to revisit our vowel
counting program from earlier in this chapter once more. We made a promise when
we were first developing vowels3.py (in the last chapter) that we’d consider a set
over a list as the primary data structure for that program. Let’s make good on that
promise now.

'ol, lul, 'ul }

123

sets hate duplicates

Creating Sets Efficiently

Let’s take yet another look at vowels3. py, which uses a list to work out which
vowels appear in any word. bject b
PP y

Here’s the code once more. Note how we have logic in this program to ensure we
only remember each found vowel once. That is, we are very deliberately ensuring Set
that no duplicate vowels are ever added to the found list:

o000 vowels3.py - /Users/Paul/Desktop/_NewBook/ch02/vowels3.py (3.4.3)
N vwels= [|a|, |e|’ |i|' |°|' |u|]
This is “vowels3.py word = input("Provide a word to search for vowels: ")
whith veports on found = []
the unique vowels ———> | for letter in word:
. d. if letter in vowels:
found in a wor ‘ .
This tode uses a list if l:ttes not 12 io::d:
ound.append(letter .
as its primary data for vowel in found =PP ¢) We never allov}:j 4“‘7“8{"65
sbrutture. print (vowel) in the “found list.
|
Ln: 11|Col: 0
Before continuing, use IDLE to save this code as vowels7.py so that we can
make changes without having to worry about breaking our list-based solution
(which we know works). As is becoming our standard practice, let’s experiment at
the >>> prompt first before adjusting the vowels7.py code. We’ll edit the code
in the IDLE edit window once we’ve worked out the code we need.
Creating sets from sequences
We start by creating a set of vowels using the code from the middle of the last
page (you can skip this step if you've already typed that code into your >>>
prompt):
>>> vowels = { 'a', 'e', 'e', 'i', 'o', 'u', 'u' }
>>> vowels
{|e|, 'u', |a|, 'i', 'ol}
Below is a useful shorthand that allows you to pass any sequence (such as a string) These two lines of tode
to the set function to quickly generate a set. Here’s how to create the set of do.{;hc same 'l:hingr both
vowels using the set function: dssign @ new set object to
a variable.

>>> vowels2 = set('aeeiouu') w

>>> vowels2
{lel, |u|, lal, |i|, lol}

124 Chapter 3

structured data

Taking Advantage of Set Methods

Now that we have our vowels in a set, our next step is to take a word and
determine whether any of the letters in the word are vowels. We could do this by object b
checking whether each letter in the word is in the set, as the in operator works

with sets in much the same way as it does with dictionaries and lists. That is,
we could use in to determine whether a set contains any letter, and then cycle
through the letters in the word using a for loop.

Set

However, let’s not follow that strategy here, as the set methods can do a lot of this
looping work for us.

There’s a much better way to perform this type of operation when using sets. It
nvolves taking advantage of the methods that come with every set, and that
allow you to perform operations such as union, difference, and intersection. Prior
to changing the code in vowels7.py, let’s learn how these methods work by
experimenting at the >>> prompt and considering how the interpreter sees the
set data. Be sure to follow along on your computer. Let’s start by creating a set of
vowels, then assigning a value to the word variable:

>>> vowels = set('aeiou')
>>> word = 'hello'

The interpreter creates two objects: one set and one string. Here’s what the
vowels set looks like in the interpreter’s memory:

Lj_' — 40 o
A

l;, E five letter

Ob\jcd'(:s.

vowels @

Let’s see what happens when we perform a union of the vowels set and the set

of letters created from the value in the word variable. We’ll create a second set

on-the-fly by passing the word variable to the set function, which is then passed

to the union method provided by vowels. The result of this call is another

set, which we assign to another variable (called u here). This new variable is a P\/{:hon tonverts the value
combination of the objects in both sets (a union): in “word” into 3 set of

letter ob\)cd:s (rcmoving any

——A———\ dUF'iCa‘kcs as |+, dOCS So).
>>> u = vowels.union (set (word))

The “union” method tombines J

one set with another, which i
e then aviomed Mw' After this call to the union method, what do

variable called “u” (which is the vowels and u sets look like?

ano‘{:hcr sc{:)‘
you are here » 125

fun with

union Works by Combining Sets

At the bottom of the previous page we used the union method to create a
new set called u, which was a combination of the letters in the vowels set
together with the set of unique letters in word. The act of creating this new
set has no impact on vowels, which remains as it was before the union.
However, the u set is new, as it is created as a result of the union.

Here’s what happens:

The set of vowels

Set

The word “hello” is +urned
into a set, which vesults
in du?liCa{:c lettevs being

removed.

VOWEI(S @iy ,)
) h

ayos|Es]
13 [

3
]

) set(word)

/

u = vowels.union (set (word))

| A]]

What happened to the loop code?

That single line of code packs a lot of punch. Note that you haven’t
specifically instructed the interpreter to perform a loop. Instead, you told the
interpreter what you wanted done—not how you wanted it done—and the
interpreter has obliged by creating a new set containing the objects you're
after.

A common requirement (now that we’ve created the union) is to turn the
resulting set into a sorted list. Doing so is trivial, thanks to the sorted and
list functions:
>>> u list = sorted(list(u))
>>> u list

‘&—\\\\\

The “W” set consists of all

the unique ob\)cc{:s from
both sets.

A sorted list o‘(:
unique letters

[lal, |e|’ lhl, |i|’ lll, |o|’ lul]

126

structured data

difference Tells You What’s Not Shared

Another set method is difference, which, given two sets, can tell you
what’s in one set but not the other. Let’s use difference in much the same object b

way as we did with union and see what we end up with:

Set
>>> d = vowels.difference (set (word))

>>> d
{) u) , |l i |l ,) a) }
The difference function compares the objects in vowels against the

objects in set (word), then returns a new set of objects (called d here)
which are in the vowels set but no/ in set (word).

Here’s what happens:

The word “hello” is

The set of vowels \j r— turned into a set.
Hyesle Wajirs
&

VOWEI(S @iy g set(word)

d = vowels.difference (set (word))

e
L;;_-v ﬁ—\ The “d” set eonsists of

all the objeets in “vowels”
that aren't in “set(word)”.

We once again draw your attention to the fact that this outcome has been
accomplished without using a for loop. The difference function does all
the grunt work here; all we did was state what was required.

Flip over to the next page to look at one final set method: intersection.

you are here » 127

what is

intersection Reports on Commonality o G

The third set method that we’ll look at is intersection, which takes the
objects in one set and compares them to those in another, then reports on an biect b
) p ’ p Y

common objects found.

In relation to the requirements that we have with vowels7.py, what the Set
intersection method does sounds very promising, as we want to know which
of the letters in the user’s word are vowels.

Recall that we have the string "hello" in the word variable, and our vowels in
the vowels set. Here’s the intersection method in action:

>>> i1 = vowels.intersection (set (word))
>>> i
{lel, |o|}

The intersection method confirms the vowels e and o are in the word
variable. Here’s what happens:

The word “hello” is

The set of vowels \ ﬁ turned into a set.
@ &
[

/

i = vowels.intersection (set (word))

VoWelS @ < — set(word)

The & set consists of all
the ob\')cc{:s in “Vowcls” that

| @ E- L é/ ave also in “set(word)”.

There are more set methods than the three we’ve looked at over these last few
pages, but of the three, intersection is of most interest to us here. In a single
line of code, we’ve solved the problem we posed near the start of the last chapter:
dentify the vowels in any string. And all without having to use any loop code. Let’s
return to the vowels7.py program and apply what we know now.

128

data

Sets: What You Already Know

Here’s a quick rundown of what you already know about Python’s set data
structure:

%BUL[ET POINTS

m Sets in Python do not allow duplicates. = You can pass any sequence to the set function
G . to create a set of elements from the objects in the
= | ike dictionaries, sets are enclosed in curly braces, sequence (minus any duplicates)
but sets do not identify key/value pairs. Instead, each ‘
unique object in the set is separated from the next by a = Sets come pre-packaged with lots of built-in functionality,
comma. including methods to perform union, difference, and
® Also like dictionaries, sets do not maintain insertion intersection.
order (but can be ordered with the sorted function).

_ qadharpen vour pencil
S i

——

Here is the code to the vowe1s3.py program once more.

Based on what you now know about sets, grab your pencil and
strike out the code you no longer need. In the space provided on
the right, provide the code you'd add to convert this list-using
program to take advantage of a set.

Hint: you'll end up with a lot less code.

vowels = 'u']

word =

found = []

for letter in word:

if letter in vowels:

if letter not in found:

found.append (letter)

for vowel in found:

print (vowel)

When you're done, be sure to rename your file vowels7.py.

129

vowels with

— @G harpen your pencil
A solutlon Here is the code to the vowe1s3.py program once more.

Based on what you now know about sets, you were to grab your
pencil and strike out the code you no longer needed. In the space
provided on the right, you were to provide the code you'd add to
convert this list-using program to take advantage of a set.

Theve's lots of

tode to get vid of.
Hint: you’ll end up with a lot less code. Create a set

of vowels.

el i]
TOUTITS |

for Jetter Jn sercre 1couhd = VOWCIS-ih{CV‘SCC{iOh(SC'E(WOY‘d))

it Jlettor Jn SIouedeees

it lottor not 1n _SererttaT™ ThCSC ‘FiVC lihCS
of 'iS‘E—onccssing

—f U Rt pe Rt Te L]
........................ tode ave rcPlaccd

for vowel in found: by a single line of
........................ set tode

print (vowel)

When you were done, you were to rename your file vowels7.py.

I feel cheated...all that time wasted
learning about lists and dictionaries, and
the best solution to this vowels problem
all along was to use a set? Seriously?

It wasn’t a waste of time.

Being able to spot when to use one built-in data
structure over another is important (as you’ll want to

be sure you’re picking the right one). The only way you
can do this is to get experience using all of them. None
of the built-in data structures qualify as a “one size

fits all” technology, as they all have their strengths and
weaknesses. Once you understand what these are, you’ll
be better equipped to select the correct data structure
based on your application’s specific data requirements.

130

*—Tost DRIVD

Let's take vowels7.py for a spin to confirm that the set-based version of our program runs as

expected:

Our latest tode

P

data

vowels7.py - /Users/Paul/Desktop/_NewBook/ch03/vowels? py (3.4.3)

vowels = set('aeiou’)
word = input(“Provide a word to search for vowels: ")
found = vowels.intersection(set(word))

vowel found:
print (vowel)
[XeN] Python 3.4.3 Shell
>>> RESTART
>>>
Provide a word to search for vowels: hitch-hiker
=
i
>>> RESTART
>>>
Provide a word to search for vowels: Galaxy
a
>>> RESTART
>>>
Provide a word to search for vowels: life, the universe, everything
i
a
u
=
>>> RESTART
>>>
Provide a word to search for vowels: sky $::\\\
>>>

N\

Ln: 23|Col: 4

Using a set was the perfect choice here...

But that’s not to say that the two other data structures don’t have their

uses. For instance, if you need to perform, say, a frequency count, Python’s

dictionary works best. However, if you are more concerned with maintaining

insertion order, then only a list will do...which is almost true. There’s one

other built-in data structure that maintains insertion order, and which we’ve

yet to discuss: the tuple.

Let’s spend the remainder of this chapter in the company of Python’s tuple.

Evc\ryfhing is working as expetted.

134

Thevre's nothing >>> vowels = ['a', 'e', 'i',
new heve. A list of — 1 >>> type (vowels)
vowels is eveated. <class 'list'>

>>> vowels2 = ('a', 'e', 'i',

why?

Making the Case for Tuples

When most programmers new to Python first come across the tuple, they
question why such a data structure even exists. After all, a tuple is like a list
that cannot be changed once it’s created (and populated with data). Tuples
are immutable: they cannot change. So, why do we need them?

It turns out that having an immutable data structure can often be useful.
Imagine that you need to guard against side effects by ensuring some data
in your program never changes. Or perhaps you have a large constant list
(which you know won’t change) and you’re worried about performance.
Why incur the cost of all that extra (mutable) list processing code if you’re
never going to need it? Using a tuple in these cases avoids unnecessary
overhead and guards against nasty data side effects (were they to occur).

How to spot a tuple in code

As tuples are closely related to lists, it’s no surprise that they look similar
(and behave in a similar way. Tuples are surrounded by parentheses,
whereas lists use square brackets. A quick visit to the >>> prompt lets us
compare tuples with lists. Note how we’re using the t ype built-in function
to confirm the type of each object created:

The “type” >>> type (vowels2)
built—in <class 'tuple'>
fund{:ion veports

‘l:hc ‘EYPC m‘r an\/

ochc{.

Now that vowels and vowels2 exist (and are populated with data), we
can ask the shell to display what they contain. Doing so confirms that the
tuple is not quite the same as the list:

>>> vowels
[1 al , le 1 ,
>>> vowels2

lil’ lol’ lul]

N

Tuple

—

(==}

therejare no
Dumb Questions

Q,: Where does the name “tuple” come from?

A: It depends whom you ask, but the name has
its origin in mathematics. Find out more than you'd
ever want to know by visiting https:/en.wikipedia.
org/wiki/Tuple.

u') m
This fu?lc looks
like a list, but
isn't. Tuples are
surrounded b
Paventheses (not
square brackets).

The
paventheses

(lal, vev’ lil, 'O', 'u')e_ihdidafcfha{:

But what happens if we try to change a tuple?

132

this is a tuple.

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Tuple

data

Tuples Are Immutable 2
|

As tuples are sort of like lists, they support the same square bracket notation 0
commonly associated with lists. We already know that we can use this
notation to change the contents of a list. Here’s what we’d do to change the Tuple
lowercase letter 1 in the vowels list to be an uppercase I:

>>> vowels[2] = '1'4——‘——-\\\\

>>> vowels i

v v 1At v v T AT v v ASS'S" an “PPCVCasc “I”
[' a', 'e', 'TI', 'o', 'u'l] to the third element
_/ of the “wouels” list.
As expected, the third element in the list (at index location 2) has changed,
which 1s fine and expected, as lists are mutable. However, look what happens The ithV‘P\rc{:cr
if we try to do the same thing with the vowels2 tuple: EOmitins loudl\/ if You
vy to thange a tuple.
>>> vowels2[2] = 'I'
Traceback (most recent call last):
File "<pyshell#l6>", line 1, in <module>
vowels2[2] = 'I'

TypeError: 'tuple' object does not support item assignment

>>> vowels2

(' a’, 'e', ’i’, 'o', ’u’)

K_/— NO Chansc hC\"C, as 'EUFICS
are immutable

Tuples are immutable, so we can’t complain when the interpreter protests
at our trying to change the objects stored in the tuple. After all, that’s the
whole point of a tuple: once created and populated with data, a tuple cannot
change.
Make no mistake: this behavior is useful, especially when you need to ensure I { 1‘ c[.
that some data can’t change. The only way to ensure this is to put the data in the data in
a tuple, which then instructs the interpreter to stop any code from trying to
change the tuple’s data. your structure
As we work our way through the rest of this book, we’ll always use tuples never changes’
when it makes sense to do so. With reference to the vowel-processing code, it L.
should now be clear that the vowels data structure should always be stored Put lt ma tl[Pl,e.

in a tuple as opposed to a list, as it makes no sense to use a mutable data
structure 1n this instance (as the five vowels never need to change).

There’s not much else to tuples—think of them as immutable lists, nothing
more. However, there is one usage that trips up many a programmer, so let’s
learn what this 1s so that you can avoid it.

133

a tuple

Watch Qut for Single-Object Tuples

Let’s imagine you want to store a single string in a tuple. It’s tempting to put
the string inside parentheses, and then assign it to a variable name...but doing
so does not produce the expected outcome.

Take a look at this interaction with the >>> prompt, which demonstrates
what happens when you do this:

>>> t = ('Python')

>>> type(t) This is not what we
<class 'str'> expected. We've ended
S>> £ S———— wwitha s{:\ring. What

' Python' happened to our tuple?
What looks like a single-object tuple isn’t; it’s a string. This has happened

due to a syntactical quirk in the Python language. The rule is that, in order

for a tuple to be a tuple, every tuple needs to include at least one comma

between the parentheses, even when the tuple contains a single object. This

rule means that in order to assign a single object to a tuple (we’re assigning a

string object in this instance), we need to include the trailing comma, like so:

Tuple

>>> £2 = ('Bython',) . TNk comma mike

all the differente, as it

This looks a little weird, but don’t let that worry you. Just remember this Lells the in Levpreter that

rule and you’ll be fine: every tuple needs to include at least one comma between the fhis is a tuple.
parentheses. When you now ask the interpreter to tell you what type t2 is
(as well as display its value), you learn that £ 2 is a tuple, which is what 1s

expected:

>>> type (t2) That’s better: we now
<class 'tuple'> /_ have a tuple.

>>> t2
sy) The interpreter displays
’\\/—\ {:hc singlc—Ob\)cct {;u\?\c
with the trailing comma.
It is quite common for functions to both accept and return their arguments
as a tuple, even when they accept or return a single object. Consequently,
youw’ll come across this syntax often when working with functions. We’ll have
more to say about the relationship between functions and tuples in a little bit;
in fact, we’ll devote the next chapter to functions (so you won’t have long to
walit).

Now that you know about the four data structure built-ins, and before we get
to the chapter on functions, let’s take a little detour and squeeze in a short—
and fun!—example of a more complex data structure.

134

=

data

Combining the Built-in Pata Structures

All this talk of data structures
has me wondering if things can get
more complex. Specifically, can T
store a dictionary in a dictionary?

This question gets asked a lot.

Once programmers become used to storing numbers,
strings, and booleans in lists and dictionaries, they very
quickly graduate to wondering whether the built-ins
support storing more complex data. That 1s, can the
built-in data structures themselves store built-in data
structures?

The answer is yes, and the reason this is so is due to
the fact that everything is an object in Python.

Everything we’ve stored so far in each of the built-ins
has been an object. The fact they’ve been “simple
objects” (like numbers and strings) does not matter, as
the built-ins can store any object. All of the built-ins
(despite being “complex”) are objects, too, so you can
mix-and-match in whatever way you choose. Simply
assign the built-in data structure as you would a simple
object, and you’re golden.

Let’s look at an example that uses a dictionary of
dictionaries.

thereqare no R
Dumb Questions

Q,: Does what you’re about to do only work with dictionaries? Can | have a list of lists, or a set of lists, or a tuple of dictionaries?

A: Yes, you can. We'll demonstrate how a dictionary of dictionaries works, but you can combine the built-ins in whichever way you choose.

135

a mutable table

Storing a Table of Pata

As everything is an object, any of the built-in data structures can be stored in any
other built-in data structure, enabling the construction of arbitrarily complex data
structures...subject to your brain’s ability to actually visualize what’s going on. For
instance, although a dictionary of lists containing tuples that contain sets of dictionaries
might sound like a good idea, it may not be, as its complexity is off the scale.

A complex structure that comes up a lot is a dictionary of dictionaries. This
structure can be used to create a mutable table. To illustrate, imagine we have this
table describing a motley collection of characters:

Name Gender Occupation Home Planet

Ford Prefect Male Researcher Betelgeuse Seven =
Avthur Dent Male Sandwith—-Maker Earth

Tricia MeMillan Female Mathematician Earth

Mavvin Unknown Paranoid Android Unknown

Recall how, at the start of this chapter, we created a dictionary called
person3 to store Ford Prefect’s data:

person3 = { 'Name': 'Ford Prefect'’,
'Gender': 'Male’,
'Occupation’': 'Researcher’',
'Home Planet': 'Betelgeuse Seven' }

Rather than create (and then grapple with) four individual dictionary
variables for each line of data in our table, let’s create a single dictionary
variable, called people. We’ll then use people to store any number of
other dictionaries.

To get going, we first create an empty people dictionary, then assign Ford
Prefect’s data to a key:

/—- Start with a new, empty dictionary.
>>> people = {}

>>> people['Ford'] = { 'Name': 'Ford Prefect',

, J\ 'Gender': 'Male’,
The key is “FOfd) 'Occupation’': 'Researcher’,
and the value is 'Home Planet': 'Betelgeuse Seven' }

another diC{Zi°“ar\/'

136 Chapter 3

structured data

A Dictionary Containing a Dictionary P dicbonary enbegs
1ETIonary embe, ed

With the people dictionary created and one row of data added (Ford’s), we can ';:’;x a didfionar\/—nofc
ask the interpreter to display the people dictionary at the >>> prompt. The ¢ extra "‘W')' braces.
resulting output looks a little confusing, but all of our data is there:

>>> people

{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male'’,
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'}}

There is only one embedded dictionary in people (at the moment), so calling
this a “dictionary of dictionaries” is a bit of a stretch, as people contains just
the one right now. Here’s what people looks like to the interpreter:

l Oceupation *—)t Researther J
1

people @=————> ol l Gender h(Male
« » _/\ lHomc Planc{i’—)(Bctclgcusc chd
_l(;‘\\:{:\:::r?\}c l Name *—)t Ford Prefeet I

~-tontains another dic{:ionar\/ ._/\
(which is the value assotiated

with the “Ford” key).

Avthu's data

We can now proceed to add in the data from the other three rows in our table:

>>> people['Arthur'] = { 'Name': 'Arthur Dent'’,
'Gender': 'Male’,
'Occupation’': 'Sandwich-Maker',
'"Home Planet': 'Earth' }
>>> people['Trillian'] = { 'Name': 'Tricia McMillan', Trieia's dsta
'Gender': 'Female', . GSSOCiazcd
'"Occupation': 'Mathematician', »é— i the
'"Home Planet': 'Earth' } “Tvillian” key.
>>> people['Robot'] = { 'Name': 'Marvin',
'Gender': 'Unknown',
'Occupation': 'Paranoid Android',
'"Home Planet': 'Unknown' }

Mavvin's data is assotiated with —
- “RObOJc" ! you are here » 137

it’s just

A Dictionary of Dictionaries (a.k.a. a Table)

With the people dictionary populated with four embedded dictionaries, we can
ask the interpreter to display the people dictionary at the >>> prompt.

Doing so results in an unholy mess of data on screen (see below). I a little hard
%o vead, but 3|
Despite the mess, all of our data is there. Note that each opening curly brace starts the dats is theve

a new dictionary, while a closing curly brace terminates a dictionary. Go ahead and
count them (there are five of each):

>>> people

{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male’,
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'},
'Trillian': {'Occupation': 'Mathematician', 'Gender':
'Female', 'Home Planet': 'Earth', 'Name': 'Tricia
McMillan'}, 'Robot': {'Occupation': 'Paranoid Android’',
'Gender': 'Unknown', 'Home Planet': 'Unknown', 'Name':
'Marvin'}, 'Arthur': {'Occupation': 'Sandwich-Maker',
'Gender': 'Male', 'Home Planet': 'Earth', 'Name': 'Arthur
Dent'}}

The interpreter just
dumps the data to the screen.
Any chance we can make this
more presentable?

Yes, we can make this easier to read.

We could pop over to the >>> prompt and code
up a quick for loop that could iterate over each
of the keys in the people dictionary. As we did
this, a nested for loop could process each of
the embedded dictionaries, being sure to output
something easier to read on screen.

We could...but we aren’t going to, as someone else
has already done this work for us.

138

structured data

Pretty-Printing Complex Pata Structures

The standard library includes a module called pprint that can take any data
structure and display it in an easier-to-read format. The name pprintisa
shorthand for “pretty print.”

Our dinionary

Let’s use the pprint module with our people dictionary (of dictionaries). dietionari
Below, we once more display the data “in the raw” at the >>> prompt, and then is havd 4o VCI;;

we import the pprint module before invoking its pprint function to produce
the output we need:

>>> people

{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male’,
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'},
'Trillian': {'Occupation': 'Mathematician', 'Gender':
'Female', 'Home Planet': 'Earth', 'Name': 'Tricia
McMillan'}, 'Robot': {'Occupation': 'Paranoid Android',
'Gender': 'Unknown', 'Home Planet': 'Unknown', 'Name':
'Marvin'}, 'Arthur': {'Occupation': 'Sandwich-Maker',
'Gender': 'Male', 'Home Planet': 'Earth', 'Name': 'Arthur
Dent'}}
>>>
>>> import pprint << bwwﬁth“?ﬁﬁﬁmwdqfhnmmh
unttion to do the work.

>S5S the “pprint”
>>> pprint.pprint(people)é%——/////

{'Arthur': {'Gender': 'Male'’',
'Home Planet': 'Earth',
'"Name': 'Arthur Dent',
'Occupation’': 'Sandwich-Maker'},

'Ford': {'Gender': 'Male’', T“Swfwf
'Home Planet': 'Betelgeuse Seven', ;:r?:fk*
'Name': 'Ford Prefect', MﬁCﬁLﬂw
'Occupation’': 'Researcher'}, still have five
'Robot': {'Gender': 'Unknown', < oPening and five
'Home Planet': 'Unknown', iti%??ﬁ
'Name': 'Marvin’, Jchatfvtha:kiui
'Occupation': 'Paranoid Android'}, WWM{L{MY
'Trillian': {'Gender': 'Female', are now so muth
'"Home Planet': 'Earth', easier to see
'Name': 'Tricia McMillan', (and count).
'Occupation’': 'Mathematician'}}

you are here » 139

how it

Visvalizing Complex Pata Structures

Let’s update our diagram depicting what the interpreter now “sees” when the
people dictionary of dictionaries is populated with data:

The “people”
dictionary \

PEOPIE @y

{ Oceupation ’—)lSandwich—Makch

[Gerder [ek
M [Home Planct [et

l Name t ;r{:hw Dent

(OCCuPa{:ion ’—)t Researther I

= t Gender ")—)l Male
L—j lHomc Plancg—)chtclgcusc Seven

t Name }—)t Ford Prefect

l OCCuya‘(:ion HtPavanoid Androidl

TSN e B

tHomc P|anc{:<*»t u @ovﬁu J
t Name Hl Mavvin]

t Oceupation *—)t Ma‘thana“:icianl

7 L Gender :)—)L Female
L—jf (Home Planct @=>-{ Earth

| Nome §—>{Tvicia MeMillan

At this point, a reasonable question to ask is: Now that we have all this data stored in a
dictionary of dictionaries, how do we get at it? Let’s answer this question on the next page.

140

Four
embedded
dictionaries

structured data

Accessing a Complex Pata Structure’s Data

We now have our table of data stored in the people dictionary. Let’s remind
ourselves of what the original table of data looked like:

Name Gender Occupation Home Planet
Ford Prefect Male Researther Betelgeuse Seven
Avrthur Dent Male Sandwith—Makev Earth

Tritia MeMillan Female Mathematitian Earth

Mavvin Unknown Pavranoid Andvoid Unknown

If we were asked to work out what Arthur does, we’d start by looking down the
Name column for Arthur’s name, and then we’d look across the row of data until
we arrived at the Occupation column, where we’d be able to read “Sandwich-
Maker.”

When it comes to accessing data in a complex data structure (such as our people
dictionary of dictionaries), we can follow a similar process, which we’re now going
to demonstrate at the >>> prompt.

We start by finding Arthur’s data in the people dictionary, which we can do by
putting Arthur’s key between square brackets:

Ask for >>> people|'Arthur']
Arthur's {'Occupation’': 'Sandwich-Maker', 'Home Planet': 'Earth',
row 'Gender': 'Male', 'Name': 'Arthur Dent'} 3
data Thza vow of dietionar
data assoei i
Having found Arthur’s row of data, we can now ask for the value associated with « Arfhw:icl:;&d with the

the Occupation key. To do this, we employ a second pair of square brackets to
index into Arthur’s dictionary and access the data we’re looking for:

|dentify the vow. _\/ / [dentify the column.

>>> people|['Arthur'] ['Occupation’]
'Sandwich-Maker'
Using double square brackets lets you access any data value from a table by
identifying the row and column you are interested in. The row corresponds to a

key used by the enclosing dictionary (people, in our example), while the column
corresponds to any of the keys used by an embedded dictionary.

you are here » 141

complex

Pata Is As Complex As You Make It

Whether you have a small amount of data (a simple list) or something more
complex (a dictionary of dictionaries), it’s nice to know that Python’s four
built-in data structures can accommodate your data needs. What’s especially
nice is the dynamic nature of the data structures you build; other than tuples,
each of the data structures can grow and shrink as needed, with Python’s
interpreter taking care of any memory allocation/deallocation details for you.

We are not done with data yet, and we’ll come back to this topic again later in
this book. For now, though, you know enough to be getting on with things.

In the next chapter, we start to talk about techniques to effectively reuse code
with Python, by learning about the most basic of the code reuse technologies:
functions.

142

Chapter %’s Code, 1 of 2

structured data

vowels = ['a', 'e', 'i', 'o', 'u'l
word = input ("Provide a word to search for vowels:

ll)

found = {}

found['a'] =
found['e'] =
found['i'] =
found['o'] =
found['u'] =

O O O O O

for letter in word:
if letter in vowels:
found[letter] += 1

for k, v in sorted(found.items()) :
print (k, 'was found', 'time (S)

.1

A

This is the code for
‘Wowckqipyﬂ whith
Pcvformcd a \crcqucnc\/
count. This code was
(looscly) based on
“vowcls3.yy", which we
fivst saw in Chapter 2.

R

vowels

= ['a', 'e', 'i',
|v\ an a{'.{',Cm\?{: to

vemove the dictionary
initialization code, we

treated “vowelsZpy

whith trashed with ——>
vuntime ervor (due o

us Failing to initialize

found = {}
for letter in word:
if letter in vowels:
found[letter] +=

word = input ("Provide a word to search for vowels:

'O', 'u|]

n)

'time(s) .")

the ‘(:rcl\ucv\é‘/ counts): for k, v in sorted(found.items()):
print (k, 'was found', v,
vowels = ['a', 'e', 'i', 'o', 'u']
word = input ("Provide a word to search for vowels: ")
found = {}

for letter in word:
if letter in vowels:
found.setdefault (letter,
found[letter] += 1

0)

for k, v in sorted(found.items()) :

print (k, 'was found', v, 'time(s).

“vowelsb.py” Fixed the
cunkime evvor thanks to ,
the use of the “setdefault
method, whith Lou(mcs with
every dictionary (and assigns
S a dc}aul’c valuc\lho akeyita
value isn't alveady set)-

you are here » 143

the code

Chapter %’s Code, 2 of 2

vowels = set ('aeiou')
word = input ("Provide a word to search for vowels: ")

found = vowels.intersection (set (word))
for vowel in found: The final version of the vowels
print (vowel) Program, “VOWC'S".F\/”, took
advanfcagc of Py{:hon's set daty
s‘{:\rut‘i‘fwc +o Lonsidcrably shrink
'E:C, "Si—'bascd “vowcls3.Py” tode
while still providing £h '
‘Fuhcfionalify. I the same

Was there no sample
program that took
advantage of tuples?

No, there wasn’t. But that’s OK.

We didn’t exploit tuples in this chapter with an
example program, as tuples don’t come into their
own until discussed in relation to functions. As we
have already stated, we’ll see tuples again when
we meet functions (in the next chapter), as well

as elsewhere in this book. Fach time we see them,
we’ll be sure to point out each tuple usage. As
you continue with your Python travels, you’ll see
tuples pop up all over the place.

144 Chapter 3

4 code reuse

*
+ Functions and Modules *

No matter how much code I
write, things just become totally
unmanageable after a while...

Reusing code is key to building a maintainable system.

And when it comes to reusing code in Python, it all starts and ends with the humble
function. Take some lines of code, give them a name, and you’ve got a function (which
can be reused). Take a collection of functions and package them as a file, and you've
got a module (which can also be reused). It's true what they say: it’s good to share, and
by the end of this chapter, you'll be well on your way to sharing and reusing your code,

thanks to an understanding of how Python’s functions and modules work.

this is a new chapter 145

starting with

Reusing Code with Functions

Although a few lines of code can accomplish a lot in Python, sooner or later
you’re going to find your program’s codebase is growing...and, when it does,
things quickly become harder to manage. What started out as 20 lines of
Python code has somehow ballooned to 500 lines or more! When this happens,
it’s time to start thinking about what strategies you can use to reduce the
complexity of your codebase.

Like many other programming languages, Python supports modularity, in
that you can break large chunks of code into smaller, more manageable pieces.
You do this by creating functions, which you can think of as named chunks
of code. Recall this diagram from Chapter 1, which shows the relationship
between functions, modules, and the standard library:

The amcﬁonf D é_

getcwd

s part of a

modu‘Cm

K_\J

whith tomes as part of
fhe standard library:

_—
random

In this chapter, we’re going to concentrate on what’s involved in creating your
own functions, shown at the very top of the diagram. Once you’re happily
creating functions, we’ll also show you how to create a module.

146

datetim:

In this chapter, we ave tontentratin
Oh'évcafing and using Fundfions (but
we're vepeating the entire diagram from
Chay{cv | in £his instance {o remind You
how funétions £it into the la\rgcr scthc
of things). We will ereate our own module
too, but. are leaving the creation of
libraries to other books.

code

Introducing Functions

Before we get to turning some of our existing code into a function, let’s spend a
moment looking at the anatomy of any function in Python. Once this introduction 1s
complete, we’ll look at some of our existing code and go through the steps required to
turn it into a function that you can reuse.

Don’t sweat the details just yet. All you need to do here is get a feel for what functions
look like in Python, as described on this and the next page. We’ll delve into the details
of all you need to know as this chapter progresses. The IDLE window on this page
presents a template you can use when creating any function. As you are looking at it,
consider the following:

o Functions introduce two new keywords: def and return
Both of these keywords are colored orange in IDLE. The de £ keyword names the function
(shown in blue), and details any arguments the function may have. The use of the return
keyword is optional, and is used to pass back a value to the code that invoked the function.

Functions can accept argument data
A function can accept argument data (1.e., input to the function). You can specify a list of
arguments between the parentheses on the def line, following the function’s name.

Functions contain code and (usually) documentation
Code is indented one level beneath the def line, and should include comments where it
makes sense. We demonstrate two ways to add comments to code: using a triple-quoted

string (shown in green in the template and known as a docstring), and using a single-line ? “3"_0“/
comment, which is prefixed by the # symbol (and shown in red, below). unc:tion
template

The “def” line names
the Lunetion and lists

[) @ function_template.py - [Users/Paul/Desktop/ NewBook/chO4/function_template.py (3.4.3)

ts.
any argumen \—j def a_descriptive_name (optional_ arguments) :
"""A documentation string."""
/7 # Your function's code goes here.

Your function's code goes here. k_\
The “dotsbring" # Your fu:t_:tio:'s iode goes here. \
deseribes the | return optional_value \/ow tode goes

—Toon heve Gin ?\BCC
d‘* of these sing‘c——

\'mc (,ommCV\{l

‘alaccholdcrs)~

unttion’s purpose.

Geek Bits

Python uses the name “function” to describe a reusable chunk of code. Other programming languages

use names such as “procedure,”“subroutine,” and “method.” When a function is part of a Python class,
it's known as a “method.”. You'll learn all about Python'’s classes and methods in a later chapter.

147

what about

What About Type Information?

Take another look at our function template. Other than some code to execute,
do you think there’s anything missing? Is there anything you’d expect to be
specified, but isn’t? Take another look:

[] @ function_template.py - [Users/Paul/Desktop/_MewBook/chO4/function_template.py (3.4.3)

def a_descriptive name (optional_ arguments) :

"""A documentation string."""

Your function's code goes here. é\

Your function's code goes here.

Your function's code goes here. Is there
return optional_value anything

| missing rom

Ln: 8 Col: 0 this funetion

template?

I'm a little freaked out by
that function template. How does

the interpreter know what types the
arguments are, as well as what type the
return value is?

It doesn’t know, but don’t let that worry you.

The Python interpreter does not force you to specify the
type of your function’s arguments or the return value.
Depending on the programming languages you’ve used
before, this may well freak you out. Don’t let it.

Python lets you send any object as a argument, and pass
back any object as a return value. The interpreter doesn’t
care or check what type these objects are (only that they are
provided).

With Python 3, it is possible to indicate the expected types for
arguments/return values, and we’ll do just that later in this
chapter. However, indicating the types expected does not
“magically” switch on type checking, as Python never checks
the types of the arguments or any return values.

148

Nawming a Chunk of Code with ‘def”

Once you've identified a chunk of your Python code you want to reuse, it’s
time to create a function. You create a function using the de £ keyword
(which is short for define). The de £ keyword is followed by the function’s
name, an optionally empty list of arguments (enclosed in parentheses), a
colon, and then one or more lines of indented code.

Recall the vowels7.py program from the end of the last chapter, which,
given a word, prints the vowels contained in that word:

code reuse

This is “VOWC'S7.P » ‘From
the end of Chap'gcr 3

Take a set of

vowels... \

..and a wovd...
ﬁ
~then perform

an ih'l:crsc,:{;‘.on_

vowels

= set ('aeiou')
word = input ("Provide a word to search for vowels:
found vowels.intersection (set (word))

for vowel in found:)
print (vowel) D‘S\"a\/ any
vesults.

n)

Let’s imagine you plan to use these five lines of code many times in a much
larger program. The last thing you’ll want to do is copy and paste this code
everywhere it’s needed...so, to keep things manageable and to ensure you
only need to maintain one copy of this code, let’s create a function.

We’ll demonstrate how at the Python Shell (for now). To turn the above five
lines of code into a function, use the de £ keyword to indicate that a function
1s starting; give the function a descriptive name (always a good idea); provide
an optionally empty list of arguments in parentheses, followed by a colon;
and then indent the lines of code relative to the def keyword, as follows:

Give Your Lunction a it
dcscriyhvc name Provide an optional list

\L f funetion has no argumen
o c/\ Don’t forget

“def” keyword. >>> def searchdvowels(): <—— the tolon
vowels set('aeiou')

word = input("Provide a word to search for vowels:
found = vowels.intersection (set (word))

7

The fives lines

o£ Lodc ﬁrow
the “vowelsTpy’
program, suitably
indented

for vowel in found:
print (vowel)

As this is the shell,
TW'CE to Cowc'l‘rm

Now that the function exists, let’s invoke it to see if it is working the way we
expect it to.

Take the time

to choose a gooJ
c[escriptive name
for your function.

of arguments—in this 3 thi
ts, so the list is cmp'l;\/‘ R

")

vemember 4o press the Enter key
Lhat the indented eode has contluded.

you are here » 149

calling

Invoking Your Function

To invoke functions in Python, provide the function name together with
values for any arguments the function expects. As the search4vowels
function (currently) takes no arguments, we can invoke it with an empty
argument list, like so:

>>> searchdvowels ()

Provide a word to search for vowels: hitch-hiker
e

i

Invoking the function again runs it again:

>>> searchdvowels ()
Provide a word to search for vowels: galaxy
a

There are no surprises here: invoking the function executes its code.

Edit your function in an editor, not at the prompt

At the moment, the code for the search4vowels function has been
entered into the >>> prompt, and it looks like this:

>>> def searchdvowels() :

. vowels = set('aeiou')
Our funttion . " . "
35 enteved word = input("Provide a word to search for vowels: ")
at the shell found = vowels.intersection(set (word))
prompt. for vowel in found:
print (vowel)
B 9

In order to work further with this code, you can recall it at the >>> prompt € sure you ve

and edit it, but this becomes very unwieldy, very quickly. Recall that once the C[C[

code you’re working with at the >>> prompt is more than a few lines long, save y our coae

you’re better off copying the code into an IDLE edit window. You can edit it
much more easily there. So, let’s do that before continuing,

as "vsearcln.py"

Crreate a new, empty IDLE edit window, then copy the function’s code from a{ter COPYlIlg tlle
the >>> prompt (being sure not to copy the >>> characters), and paste it into { . c[
the edit window. Once you’re satisfied that the formatting and indentation are unction’s code
correct, save your file as vsearch.py before continuing; {

rom the shell.

150

code reuse

) R The ‘Func{:ior\'s tode is
Use IDLE's Editor to Make Changes v in m DLE it

window, and has been
Here’s what the vsearch . py file looks like in IDLE: \/ saved as “vscav-ch.Pyn'

[JoN] vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

def searchd4vowels():
vowels = set('aeiou’)
word = input("Provide a word to search for vowels: ")
found = vowels.intersection(set (word))
for vowel in found:
print (vowel)

Ln: 8|Col: 0

If you press F5 while in the edit window, two things happen: the IDLE shell
is brought to the foreground, and the shell restarts. However, nothing appears
on screen. Try this now to see what we mean: press F5.

|€ IDLE displays an evvor

when You press 2 on "
The reason for nothing displaying is that you have yet to invoke the function. \73“‘.(,! Return to your edi
We’ll invoke it in a little bit, but for now let’s make one change to our function window and theek that Your
before moving on. It’s a small change, but an important one nonetheless. tode is the exatt same 3s

ours, then try again-

Let’s add some documentation to the top of our function.

To add a multiline comment (a docstring) to any code, enclose your

comment text in triple quotes. ﬁdjizst;hgh‘;a}:\iz:on,s
Here’s the vsearch. py file once more, with a docstring added to the top of tode, whith (bricfl\/)
the function. Go ahead and make this change to your code, too: desevibes the purpose
of this function.
0@ vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3) L

def searchdvowels():
""'Display any vowels found in an asked-for word."""
vowels = set('aeiou')
word = input("Provide a word to search for vowels: ")
found = vowels.intersection (set (word))
for vowel in found:
print (vowel)

Ln: 9 |Col: 0

you are here » 151

whither PEP

What’s the Deal with All Those Strings?

Take another look at the function as it currently stands. Pay particular attention to
the three strings in this code, which are all colored green by IDLE:

[] [] vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

def searchdvowels():
""'Display any vowels found in an asked-for word."""
vowels = set('aeiou')

found = vowels.intersection (set (word))
for vowel in found:
print (vowel)

word = input("Provide a word to search for vowels: ")

/

Ln: 9 Col: 0

k, [DLE's s\/n{:a%—highhgh{jng shows that we have

a tonsistenty \wob\cm wi
quotes. When do we use which style?

Understanding the string quote characters

In Python, strings can be enclosed in a single quote character ('), a double quote

mwmoan

character ("), or what’s known as triple quotes (or''").

As mentioned earlier, triple quotes around strings are known as docstrings,
because they are mainly used to document a function’s purpose (as shown above).

mwian

Even though you can use or ''' to surround your docstrings, most Python
programmers prefer to use """. Docstrings have an interesting characteristic in
that they can span multiple lines (other programming languages use the name

“heredoc” for the same concept).

Strings enclosed by a single quote character (') or a double quote character (")
cannot span multiple lines: you must terminate the string with a matching quote
character on the same line (as Python uses the end of the line as a statement
terminator).

th our use of string

Be consistent in

Which character you use to enclose your strings is up to you, although using the your use 0{ str lng
single quote character is very popular with the majority of Python programmers.
That said, and above all else, your usage should be consistent. ‘IUOte Cllal‘ acters.

The code shown at the top of this page (despite being only a handful of lines of I{ POSSil)le, use

code) is not consistent in its use of string quote characters. Note that the code runs

fine (as the interpreter doesn’t care which style you use), but mixing and matching Single ([uotes.

styles can make the code harder to read than it needs to be (which is a shame).

152

code

Follow Best Practice As Per the PEPs

When it comes to formatting your code (not just strings), the Python programming
community has spent a long time establishing and documenting best practice. This
best practice is known as PEP 8. PEP is shorthand for “Python Enhancement

Protocol.”
There are a large number of PEP documents in existence, and they primarily detail Fln(:[tlle lISt
proposed and implemented enhancements to the Python programming language, .
but can also document advice (on what to do and what not to do), as well as describe 0‘[pEpS 1191'9-
various Python processes. The details of the PEP documents can be very technical and .
(often) esoteric. Thus, the vast majority of Python programmers are aware of their llttPs-//WWW.
existence but rarely interact with PEPs in detail. This is true of most PEPs except for tll

on.org
PEP 8. Py
PEP 8 is the style guide for Python code. It is recommended reading for all Python C[eV/ PePS/ .

programmers, and it is the document that suggests the “be consistent” advice for string
quotes described on the last page. Take the time to read PEP 8 at least once. Another
document, PEP 257, offers conventions on how to format docstrings, and it’s worth
reading, too.

Here is the search4vowels function once more in its PEP 8—and PEP 257— This is a PEP
compliant form. The changes aren’t extensive, but standardizing on single quote 257—Com§>li ant doestrin
characters around our strings (but not around our docstrings) does look a bit better: 5

[] @ vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

def searchdvowels(): J
"""Display any vowels found in an asked-for word."""
vowels = set('aeiou')
word = input('Provide a word to search for vowels: ')
found = vowels.intersection(set(word))
for vowel in found:

print (vowel)

/L9 Col: 0

Of course, you don’t have to write code that conforms exactly to PEP 8. For example, (We've heeded PEP

our function name, search4vowels, does not conform to the guidelines, which @'s advite on being
suggests that words in a function’s name should be separated by an underscore: consistent with the single
a more compliant name is search for vowels. Note that PEP 8 is a set of quote tharatter we use
guidelines, not rules. You don’t have to comply, only consider, and we like the name £o surround our strings.
searché4vowels.

That said, the vast majority of Python programmers will thank you for writing code
that conforms to PEP 8, as it is often easier to read than code that doesn’t.

Let’s now return to enhancing the search4vowels function to accept arguments.

153

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/

add an argument

Functions Can Accept Arguments

Rather than having the function prompt the user for a word to search, let’s change
the search4vowels function so we can pass it the word as input to an argument.

Adding an argument is straightforward: you simply insert the argument’s name
between the parentheses on the def line. This argument name then becomes a
variable in the function’s suite. This is an easy edit.

Let’s also remove the line of code that prompts the user to supply a word to search,

which is another easy edit.

Let’s remind ourselves of the current state of our code:

[] [] vsearch.py - /Users/Paul/Desktop/_MNewBook/ch04/vsearch.py (3.4.3)

Remember:
"suite” is
pytlton—spealc
for "hlock.”

e = | def searchdvowels () :
""'"Display any vowels found in an asked-for word."""

Heve's our
original
Lunttion.

vowels = set('aeiou')
word = input('Provide a word to search for vowels: ')
found = vowels.intersection (set (word))
for vowel in found:
print (vowel)

Applying the two suggested edits (from above) to our function results in the IDLE
edit window looking like this (note: we’ve updated our docstring, too, which is always

a good idea):

./Mmh.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

Ln: 9 ﬁol: 0

ThIS lihC }sh)-t
needed anymore.

Put the /

U
argumcn{: S

name
between the
parentheses.

\

def searchdvowels (word) :
"""Display any vowels found in a supplied word."""

vowels = set('aeiou') The call o the

found = vowels.intersection (set (word)) “input” funetion is

for vowel in found: 9one (as we don't
print (vowel) need that line of

| tode an)'morc).

Ln: 8 h:ol: 0

Be sure to save your file after each code change, before pressing 'S to take the new
version of your function for a spin.

154 Chapter 4

code reuse

With your code loaded into IDLE's edit window (and saved), press F5, then invoke the function a few
times and see what happens:

[JoN | vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)
The eurvent) def searchdvowels (word) :
“sc&vthA’vowC\S """Display any vowels found in a supplied word."""
tode | vowels = set('aeiou')
found = vowels.intersection (set (woxrd))
for vowel in found:
print (vowel)
|
[JoN Python 3.4.3 Shell
>>> RESTART

>>>
>>> searché4vowels ()
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
searchidvowels ()
TypeError: searchd4vowels() missing 1 required positional argument:
>>> gearchd4vowels(hitch-hiker')
e
i
>>> searchd4vowels(hitch-hiker', ‘galaxy')
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
search4vowels('hitch-hiker', 'galaxy')

TypeError: searchd4vowels() takes 1 positional argument but 2 were given
>>>

Ln: |2|Col: 4

AH:hough we've invoked the “searehdvowels” funeti i
unttion three £ i i {
sutdcss«cull\/ was the one that Passed in a single, e n thie Tt Drive

the evvor messages produced by the interpreter

word'

: the only invotation that van
stringed argument. The other two failed. Take 2 moment to read

to learn why each of the incorvect ealls {ailed.

therejare no o
Dumb Questions

Q: Am | restricted to only a single argument when creating functions in Python?

A: No, you can have as many arguments as you want, depending on the service your function is providing. We are deliberately starting
off with a straightforward example, and we’'ll get to more involved examples as this chapter progresses. You can do a lot with arguments to

functions in Python, and we plan to discuss most of what's possible over the next dozen pages or so.
you are here » 155

return a

Functions Return a Result

As well as using a function to abstract some code and give it a name,

programmers typically want functions to return some calculated value, which
the code that called the function can then work with. To support returning a
value (or values) from a function, Python provides the return statement.

When the interpreter encounters a return statement in your function’s suite,
two things happen: the function terminates at the return statement, and
any value provided to the return statement is passed back to your calling
code. This behavior mimics how return works in the majority of other

programming languages.

Let’s start with a straightforward example of returning a single value from
our search4vowels function. Specifically, let’s return either True or
False depending on whether the word supplied as an argument contains

any vowels.

This s a bit of a departure from our function’s existing functionality, but bear
with us, as we are going to build up to something more complex (and useful)

in a bit. Starting with a simple example ensures we have the basics in place

first, before moving on.

156

That sounds like a plan I can
live with. The only question
T have is how do T know
whether something is true or

false?

The truth is...

Python comes with a built-in function called bool
that, when provided with any value, tells you whether
the value evaluates to True or False.

Not only does bool work with any value, it works
with any Python object. The effect of this is that
Python’s notion of truth extends far beyond the 1 for
True and the 0 for False that other programming
languages employ.

Let’s pause and take a brief look at True and False
before getting back to our discussion of return.

code reuse

Truth Up Clase -

Every object in Python has a truth value associated with it, in that the object
evaluates to either True or False.

Something is False if it evaluates to 0, the value None, an empty string,
or an empty built-in data structure. This means all of these examples are

False:
;>; bool (0) I£ an objeet evaluates 1o
aise O itis alwa\/s Falsc.
>>> bool (0.0)
False
>>> bool('')
False An empty string, an empty list, and
>>> bool ([1) <—— an empty dictionary all evaluate to
False FaISC~
>>> bool ({})
False » .
)« al eis
>>> bool (None) <«—— P\IH“"‘; lsf‘iov'c vaue!
False always False

Every other object in Python evaluates to True. Here are some examples of
objects that are True:

>>> bool (1)
True

>>> bool (~1) e 1 mmber that isn't 0 is aluays
True, even when it's negative.

True

>>> bool (42) [t may be

True "ijl\,{sma",
bok 1t i

>>> bool (0.0000000000000000000000000000001) <— .4\ 1ot 0,

True so it's True.

A nonc'n\?{:\/ s{:\ring is
>>> bool ('Panic') < always True.

True E A noncmy{:\/ built—in data
>>> bool ([42, 43, 44]) € shruthure is True
True

>>> bool({'a': 42, 'b':42})

True

We can pass any object to the bool function and determine whether it is
True or False.

Ciritically, any nonempty data structure evaluates to True.

you are here » 157

handling the truth

Returning One Value

Take another look at our function’s code, which currently accepts any value
as an argument, searches the supplied value for vowels, and then displays the
found vowels on screen:

def searchidvowels (word) :
"""Display any vowels found in a supplied word."""
vowels = set('aeiou')
found = vowels.intersection (set (word))
for vowel in found:
print (vowel) ‘}

We'll change these two lines.

Changing this function to return either True or False, based on whether
any vowels were found, is straightforward. Simply replace the last two lines of
code (the for loop) with this line of code:

return bool (found)
~-Pass in the name of
Call the “bool”——/\ L the data strueture that
funttion, and... tontains the vesults of

the vowels search.

If nothing is found, the function returns False; otherwise, it returns True.
With this change made, you can now test this new version of your function at
the Python Shell and see what happens:

>>> searchdvowels ('hitch-hiker')
« » True
The “vetuen
statement (thanks / >>> searchdvowels ('galaxy')
1o “bool”) gives us ——————= True

\;’clhc: “Teue” or >>> searchdvowels ('sky')
‘False .

As in earlier
thapters, we ave

not Classing ‘\/' as
False a vowel.

If you continue to see the previous version’s behavior, ensure you've saved the
new version of your function, as well as pressed F5 from the edit window.

Geek Bits

Don't be tempted to put parentheses around the object that return passes back to the calling

code. You don’t need to. The return statement is not a function call, so the use of parentheses isn't a
syntactical requirement. You can use them (if you really want to), but most Python programmers don't.

168 Chapter 4

code reuse

Returning More Than One Value

Functions are designed to return a single value, but it is sometimes necessary
to return more than one value. The only way to do this is to package the
multiple values in a single data structure, then return that. Thus, you’re still

returning one thing, even though it potentially contains many individual Note: we've
pieces of data. updated the

. . : . Comment.
Here’s our current function, which returns a boolean value (i.e., one thing): [

def search4dvowels (word) :
"""Return a boolean based on any vowels found."""
vowels = set('aeiou')
found = vowels.intersection (set (word))
return bool (found)

It’s a trivial edit to have the function return multiple values (in one set) as
opposed to a boolean. All we need to do is drop the call to bool:

def searchdvowels (word) :
"""Return any vowels found in a supplied word."""
vowels = set('aeiou')
found = vowels.intersection(set (word))

return found We've updated
S Return the vcsu}{',s ajc)a the comment
data strutture fa set” a9ain.

We can further reduce the last two lines of code in the above version of our
function to one line by removing the unnecessary use of the found variable.
Rather than assigning the results of the intersection to the found
variable and returning that, just return the intersection:

def searchdvowels (word) :
"""Return any vowels found in a supplied word."""
vowels = set('aeiou')
return vowels.intersection (set (word))

Return the data without J?hc use
of the unnetessary “Lound” vaviable.

Our function now returns a set of vowels found in a word, which is exactly
what we set out to do.

However, when we tested it, one of our results has us scratching our head...

you are here » 159

set weirdness

Let's take this latest version of the search4vowels function for a spin and see how it behaves.

With the latest code loaded into an IDLE edit window, press F5 to import the function i
Shell, and then invoke the function a few times:

nto the Python

[O Python 3.4.3 Shell
>>> RESTART
>>>

>>> gsearchdvowels('hitch-hiker')

{ 1 el , 1 il }

>>> gsearchdvowels ('galaxy')

{'a'}

>>> searchdvowels('life, the universe and everything')
{'e', 'u', 'a', 'i'}

>>> searchdvowels('sky')

set()

>>>

e_

Each of these
unétion invotations
works as expected,

even fhough the vesult
vom the last one

looks a little weird.

Ln: %tiol: 4

What’s the deal with set()”?

Each example in the above 7Test Drive works fine, in that the function takes a
single string value as an argument, then returns the set of vowels found. The
one result, the set, contains many values. However, the last response looks a
little weird, doesn’t it? Let’s have a closer look:

\E/c d;n’ﬁ J::c{dc ‘? L that >>> searchd4vowels ('sky')
unttion

the word “sk\/" doesn't set ()
eortain any vowels- < ..but look what our funetion
veturns. What Siv es?

You may have expected the function to return { } to represent an empty set,
but that’s a common misunderstanding, as { } represents an empty dictionary,
not an empty set.

An empty set is represented as set () by the interpreter.

This may well look a little weird, but it’s just the way things work in Python.
Let’s take a moment to recall the four built-in data structures, with a eye to
seeing how each empty data structure is represented by the interpreter.

160 Chapter 4

code reuse

Recalling the Built-in Pata Structures

Let’s remind ourselves of the four built-in data structures available to us. We’ll take
each data structure in turn, working through list, dictionary, set, and finally tuple.

Working at the shell, let’s create an empty data structure using the data structure built-
in functions (BIFs for short), then assign a small amount of data to each. We’ll then
display the contents of each data structure after each assignment:

BIF is short-
hand for "built-

>>> 1 = . { . (1]
n tunction.

List () S Use the “Uist” BIF 4o
An {;\/ >>> 1 zhcinc an ""F'EY list,
c.m\? — >] /_ hen assign some data.
fist >>>1=[1,2,3]f_/

>>> 1
[1, 2, 3]

Use the “diet” BIF to
dict() é/_— dc‘(:'mc an crn?{‘,\/ dic{:iona\r\/,

>>> d =
>>> / then assign some data. 2
—{}

A“ C"\Y{:\/ |l 3 |l |l 1 1 3 1
dietionary >>> d = { 'first': 1, 'second': 2, 'third': 3 }
>>> d
{'second': 2, 'third': 3, 'first': 1}
u « »
>>> s =set() e — d:E;:Cchcan . JCPfB!FJ:Co
m y;g)
An empt >>> s / then assian som data Even {:hough sets are entlosed
set Py — set () I some data. in turly brates, so too are
>> s = {1, 2, 3} &/ dietionavies. An cmp{:y
oo o dietionary is alveady using
{:hc double Cwl\/ b\raLCS, so
{1, 2, 3} an empty set has to be
vepresented as “set()”.
>>> t = tuple() =———— Use the “tuple” BIF to
>>> t define an empty tuple,
() //_\ Jc\r\cy\ asS'ISV\ some da‘{',a
>>> t = (1, 2, 3)9/
>>> t
An empty (1, 2, 3) Before moving on, take a moment to review
tuple how the interpreter represents each of the

empty data structures as shown on this page.

you are here » 161

annotate your

Use Annotations to lmprove Your Docs

Our review of the four data structures confirms that the search4vowels function
returns a set. But, other than calling the function and checking the return type, how
can users of our function know this ahead of time? How do they know what to expect?

A solution is to add this information to the docstring. This assumes that you very
clearly indicate in your docstring what the arguments and return value are going

to be and that this information is easy to find. Getting programmers to agree on a
standard for documenting functions is problematic (PEP 257 only suggests the format
of docstrings), so Python 3 now supports a notation called anneotations (also known
as type haints). When used, annotations document—in a standard way—the return type,
as well as the types of any arguments. Keep these points in mind:

o Function annotations are optional

It’s OK not to use them. In fact, a lot of existing Python code doesn’t (as they were only

made available to programmers in the most recent versions of Python 3).

e Function annotations are informational

They provide details about your function, but they do not imply any other behavior (such as

type checking).

Let’s annotate the search4vowels function’s arguments. The first annotation states
that the function expects a string as the type of the word argument (:str), while the
second annotation states that the function returns a set to its caller (-> set):

We ave stating that the

“word” arﬁumcv\{: is C*Fcc‘t‘d We are Sfafi"ﬂ that the

1o be a string, ’_\/ funetion veturns 3 set 4o
its ealler.

def search4dvowels (word:str) -> set:

"""Return any vowels found in a supplied word."""

vowels = set('aeiou')
return vowels.intersection (set (word))

Annotation syntax is straightforward. Each function argument has a colon appended
to it, together with the type that is expected. In our example, : str specifies that the
function expects a string. The return type is provided after the argument list, and is
indicated by an arrow symbol, which is itself followed by the return type, then the
colon. Here —> set: indicates that the function is going to return a set.

So_far; so good.

We’ve now annotated our function in a standard way. Because of this, programmers
using our function now know what’s expected of them, as well as what to expect from
the function. However, the interpreter won’t check that the function is always called
with a string, nor will it check that the function always returns a set. Which begs a
rather obvious question...

162

For more details
on annotations,
see PEP 3107
at llttPS:/ [vovew.,
Pytlton.org/ dev/
Pe]os/ Pep-3107/ .

https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/

code

Why Use Function Annotations?

If the Python interpreter isn’t going to use your annotations to check the types of
your function’s arguments and its return type, why bother with annotations at all?

The goal of annotations is not to make life easier for the interpreter; it’s to make
life easier for the user of your function. Annotations are a documentation
standard, nof a type enforcement mechanism.

In fact, the interpreter does not care what type your arguments are, nor does it
care what type of data your function returns. The interpreter calls your function
with whatever arguments are provided to it (no matter their type), executes your
function’s code, and then returns to the caller whatever value it is given by the
return statement. The type of the data being passed back and forth is not
considered by the interpreter.

What annotations do for programmers using your function is rid them of the need Use annotations

to read your function’s code to learn what types are expected by, and returned

from, your function. This is what they’ll have to do if annotations aren’t used. tO 1[91]) Jocument
Even the most beautifully written docstring will still have to be read if it doesn’t .

include annotations. your {Uﬂctlons,
Which lejclds to another question: hov.v do we view the annotations without reading aﬂC[use tlle "llelp”
the function’s code? From IDLE’s editor, press I'5, then use the help BIF at the

>>> prompt. BIF to view them.

= Tost DRIve

If you haven't done so already, use IDLE’s editor to annotate your copy of search4vowels, save
your code, and then press the F5 key. The Python Shell will restart and the >>> prompt will be waiting
for you to do something. Ask the he1p BIF to display search4vowels documentation, like so:

[JoN Python 3.4.3 Shell
>>> RESTART
>>>

>>> help (searchdvowels)
Help on function searchdvowels in module _ main__ :

searchdvowels (word:str) -> set < — NotoMydoa‘%d?"dgﬂa
Return any vowels found in a supplied word. the annotations, but it Y
'_// shows the do{,s{:kina 4o0.
>>>
Ln: 51 (Col: 4

163

function

Functions: What We Know Already

Let’s pause for a moment and review what we know (so far) about Python functions.

%BUI.I.ET POINTS

Functions are named chunks of
code.

The de £ keyword is used to name
a function, with the function’s code
indented under (and relative to) the
def keyword.

Python'’s triple-quoted strings can be
used to add multiline comments to a
function. When they are used in this
way, they are known as docstrings.

Functions can accept any number of
named arguments, including none.

The return statement lets your
functions return any number of
values (including none).

Function annotations can be used to
document the type of your function’s
arguments, as well as its return type.

Let’s take a moment to once more review the code for the search4vowels function.
Now that it accepts an argument and returns a set, it is more useful than the very first
version of the function from the start of this chapter, as we can now use it in many

more places:

def searchdvowels (word:str)
"""Return any vowels found in a supplied word."""

vowels

= set('aeiou')

-> set:

return vowels.intersection (set (word))

This function would be even more useful if, in addition to accepting an argument for
the word to search, it also accepted a second argument detailing what to search for.
This would allow us to look for any set of letters, not just the five vowels.

Additionally, the use of the name word as an argument name is OK, but not great,
as this function clearly accepts any string as an argument, as opposed to a single word.
A better variable name might be phrase, as it more closely matches what it is we
expect to receive from the users of our function.

Let’s change our function now to reflect this last suggestion.

164

The most
\rc(,cn{:
vevsion o‘(r‘
our ‘punc{:ion

code

Making a Generically Useful Function

Here’s a version of the search4vowels function (as it appears in IDLE) after it
has been changed to reflect the second of the two suggestions from the bottom of

the last page. Namely, we’ve changed the name of the word variable to the more The “word” variable
appropriate phrase: is now ¢alled “phrase”.
[] [] vsearch.py - /Users/Paul/Desktop/_NewBook/chO4/vsearch.py (3.4.3)

def searchdvowels (phrase:str) -> set: (——/

"""Return any vowels found in a supplied phrase."""
vowels = set('aeiou')
return vowels.intersection (set (phrase))

N

Ln: 6 (Col: 0

The other suggestion from the bottom of the last page was to allow users to
specify the set of letters to search for, as opposed to always using the five vowels.
To do this we can add a second argument to the function that specifies the letters
to search phrase for. This is an easy change to make. However, once we make
it, the function (as it stands) will be incorrectly named, as we’ll no longer be
searching for vowels, we’ll be searching for any set of letters. Rather than change
the current function, let’s create a second one that is based on the first. Here’s
what we propose to do:

o Give the new function a more generic name
Rather than continuing to adjust search4vowels, let’s create a new function called
search4letters, which is a name that better reflects the new function’s purpose.

e Add a second argument

Adding a second argument allows us to specify the set of letters to search the string for. Let’s
call the second argument letters. And let’s not forget to annotate letters, too.

e Remove the vowels variable
The use of the name vowels in the function’s suite no longer makes any sense, as we are
now looking for a user-specified set of letters.

o Update the docstring

There’s no point copying, then changing, the code if we don’t also adjust the docstring. Our
documentation needs be updated to reflect what the new function does.

We are going to work through these four tasks together. As each task is discussed,
be sure to edit your vsearch.py file to reflect the presented changes.

165

step by step

Creating Another Function, 1 of 3

If you haven’t done so already, open the vsearch.py file in an IDLE edit window.

Step 1 involves creating a new function, which we’ll call search4letters. Be
aware that PEP 8 suggests that all top-level functions are surrounded by two blank
lines. All of this book’s downloads conform to this guideline, but the code we show on
the printed page doesn’t (as space is at a premium here).

At the bottom of the file, type def followed by the name of your new function:

[NON) vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

def searchdvowels (phrase:str) -> set:
"""Return any vowels found in a supplied phrase."""
vowels set('aeiou')
return vowels.intersection (set (phrase))

def searchdletters

| N Stark by gving your new

Lunttion a name.

| Ln;ﬁﬁol:ﬂ |

For Step 2 we’re completing the function’s def line by adding in the names of the
two required arguments, phrase and letters. Remember to enclose the list of
arguments within parentheses, and don’t forget to include the trailing colon (and the
annotations):

e 0

[vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

def searchdvowels (phrase:str) -> set:
"""Return any vowels found in a supplied phrase."""
vowels set('aeiou')
return vowels.intersection(set(phrase))

-> set:

[don't
K_ Spetify the list of a‘rgumcn{',s, Av\d-
‘(:E:;‘c{;l the tolon (and the annotations, +00).

def searchdletters (phrase:str, letters:str)

L

n: 8 Col: 4| |

Did You notite how IDLE’s edi

editor has 3 tiei
é:ha{ the next line of tode needs +o ;c Tn;ifzf;d
and au{‘pma{ica”\/ positioned Lhe Lursor)?

166 Chapter 4

With Steps 1 and 2 complete, we’re now ready to write
the function’s code. This code is going to be similar to
that in the search4vowels function, except that we
plan to remove our reliance on the vowels variable.

Two lines vowels = set('aeiou')

of tode ——{ return vowels.intersection (set (phrase))

betome

one. def search4letters (phrase:str, letters:str) -> set:

code

Creating Another Function, 2 of 3

On to Step 3, which is to write the code for the function in such a way as to
remove the need for the vowels variable. We could continue to use the variable,
but give it a new name (as vowels no longer represents what the variable does),
but a temporary variable is not needed here, for much the same reason as why
we no longer needed the found variable earlier. Take a look at the new line

of code in search4letters, which does the same job as the two lines in
searché4vowels:

[] [] vsearch.py - /Users/Paul/Desktop/_NewBook/chO4/vsearch.py (3.4.3)

def searchdvowels (phrase:str) -> set:
"""Return any vowels found in a supplied phrase."""

return set(letters) .intersection (set (phrase))

|
Ln: Qﬁol: 0

If that single line of code in search4letters has you scratching your head,
don’t despair. It looks more complex than it is. Let’s go through this line of
code in detail to work out exactly what it does. It starts when the value of the
letters argument is turned into a set:

veate a set objeet
set (letters) <;___________%wm“kaﬂ¢

This call to the set BIF creates a set object from the characters in the
letters variable. We don’t need to assign this set object to a variable, as we
are more interested in using the set of letters right away than in storing the set
in a variable for later use. To use the just-created set object, append a dot, then
specify the method you want to invoke, as even objects that aren’t assigned to Pevlorm a set intevseetion
variables have methods. As we know from using sets in the last chapter, the on Lhe set obiett made
intersection method takes the set of characters contained in its argument

Leom “letters’ with the
(phrase) and intersects them with an existing set object (Letters): F s:-zn;b‘}:c{: made from

“Phrase -
set(letters) .intersection (set (phrase))

And, finally, the result of the intersection is returned to the calling code, thanks
to the return statement:

ks return set(letters) .intersection (set(phrase))

Send the vesul 7\

baek to the
¢alling code- 167

don’t

Creating Another Function, 3 of 3

All that remains is Step 4, where we add a docstring to our newly created
function. To do this, add a triple-quoted string right after your new function’s
def line. Here’s what we used (as comments go it’s terse, but effective):

[] & vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

def searchdvowels (phrase:str) -> set:
"""Return any vowels found in a supplied phrase."""
vowels = set('aeiou')
return vowels.intersection (set (phrase))

def search4letters(phrase:str, letters:str) -> set:
—> """Return a set of the 'letters' found in 'phrase'."""
return set(letters).intersection(set(phrase))

A dotstring

Ln: 10 Col: D

And with that, our four steps are complete and search4lettersis
ready to be tested.

Why go to all the trouble of creating a
one-line function? Isn't it better to just
copy and paste that line of code whenever
you need it?

Functions can hide complexity, too.

It 25 correct to observe that we’ve just created a one-line
function, which may not feel like much of a “savings.”
However, note that our function contains a complex single
line of code, which we are hiding from the users of this
function, and this can be a very worthwhile practice (not
to mention, way better than all that copying and pasting).

Tor instance, most programmers would be able to guess
what search4letters does if they were to come
across an invocation of it in a program. However, if
they came across that complex single line of code in a
program, they may well scratch their heads and wonder
what it does. So, even though searchd4letters

1s “short,” it’s still a good idea to abstract this type of
complexity inside a function.

168

code reuse

>~ {asTt DRive

Save the vsearch. py file once more, and then press F5 to try out the search4letters function:

[) O Python 3.4.3 Shell
>>> RESTART
>>>

>>> help(searchd4letters)
Help on function searchd4letters in module _ main_:

search4letters (phrase:str, letters:str) -> set
Return a set of the 'letters' found in 'phrase'.

>>> searchdletters('hitch-hiker', 'aeiou')
{ 1 el ' 1 il }
>>> sgsearchdletters('galaxy', 'myz')

{'z', 'y¥'}

>>> gearchdletters('life, the universe, and everything',
set ()

>>> |

Use the “hclp" BIF

to

“searchdletters”.

o')

'C&V‘n how ‘Eo use

Al of these
cxamflcs
Produte what
we expect them
to.

Ln: 78 ﬁol: 4

The search4letters function is now more generic than search4vowels,
in that it takes any set of letters and searches a given phrase for them, rather
than just searching for the letters a, e, 1, o, and u. This makes our new
function much more useful than search4vowels. Let’s now imagine that
we have a large, existing codebase that has used search4vowels extensively.
A decision has been made to retire search4vowels and replace it with
searchédletters, as the “powers that be” don’t see the need for both
functions, now that search4letters can do what search4vowels does.
A global search-and-replace of your codebase for the name “search4vowels”
with “search4letters” won’t work here, as you’ll need to add in that second
argument value, which is always going to be aeiou when simulating the
behavior of search4vowels with search4letters. So, for instance, this
single-argument call:

search4vowels ("Don't panic!")

now needs to be replaced with this dual-argument one (which is a much harder
edit to automate):

search4letters("Don't panic!", 'aeiou')

It would be nice if we could somehow specify a default value for
searché4letters’ second argument, then have the function use it if no
alternative value is provided. If we could arrange to set the default to aeiou,
we’d then be able to apply a global search-and-replace (which is an easy edit).

Wouldn't it be dreamy
if Python let me specify

default values? But I know
it's just a fantasy...

revert automatically

Specifying Defauvlt Values for Arguments

Any argument to a Python function can be assigned a default value, which can
then be automatically used if the code calling the function fails to supply an
alternate value. The mechanism for assigning a default value to an argument is
straightforward: include the default value as an assignment in the function’s de f
line.

Here’s searchd4letters’s current def line:
def searchdletters(phrase:str, letters:str) -> set:

This version of our function’s de f line (above) expects exactly two arguments, one
for phrase and another for letters. However, if we assign a default value to
letters, the function’s def line changes to look like this:

def searché4letters (phrase:str, letters:str='aeiou') -> set:

We can continue to use the search4letters function in the same way as A default value has bccn,,

before: providing both arguments with values as needed. However, if we forget assione d 4o the “letters

to supply the second argument (Letters), the interpreter will substitute in the av?,uant and will be used

value aeiou on our behalf. whenever the calling code
doesnt provide an alternate

If we were to make this change to our code in the vsearch.py file (and save it),

. . value.
we could then invoke our functions as follows:

>>> searché4letters('life, the universe, and everything')
These three {'a', 'e', 'i', 'u'}
Lunction calls >>> search4letters('life, the universe, and everything', 'aeiou')
all produte =27 {ra', 'e', 'i', 'u'}
the same

ks >>> searchdvowels('life, the universe, and everything')
resu .

{lal’ lel, lil’ lul}

Not only do these function calls produce the same output, they also demonstrate

In this i i
that the search4vowels function is no longer needed now that the letters invotation,

we are ¢alli
argument to search4letters supports a default value (compare the first and “$camh4_8“m5l)
. . v
last invocations above). « owels a3 not
searchletters”.

Now, if we are asked to retire the search4vowels function and replace all
invocations of it within our codebase with search4letters, our exploitation
of the default value mechanism for function arguments lets us do so with a simple
global search-and-replace. And we don’t have to use search4letters to only
search for vowels. That second argument allows us to specify any set of characters
to look for. As a consequence, search4letters is now more generic, and more
useful.

170

code reuse

Positional Versus Keyword Assignment

As we've just seen, the search4letters function can be invoked with
either one or two arguments, the second argument being optional. If you
provide only one argument, the letters argument defaults to a string of Our funttion’s

vowels. Take another look at the function’s def line: “dc.(f” line
def search4letters (phrase:str, letters:str='aeiou') -> set::;

As well as supporting default arguments, the Python interpreter also lets
you invoke a function using keyword arguments. To understand what a
keyword argument is, consider how we’ve invoked search4letters up
until now, for example:

search4letters('galaxy', 'xyz')

def searché4letters (phrase:str, letters:str='aeiou') -> set:

In the above invocation, the two strings are assigned to the phrase and
letters arguments based on their position. That is, the first string is
assigned to phrase, while the second 1s assigned to letters. This is known
as positional assignment, as it’s based on the order of the arguments.

In Python, it is also possible to refer to arguments by their argument name, The orderin 90 £ Lhe
and when you do, positional ordering no longer applies. This is known as arquments isn't important

when keyword arguments
ave used during invotation.

keyword assignment. To use keywords, assign each string in any order to its
correct argument name when invoking the function, as shown here:

searchd4letters (letters='xyz', phrase='galaxy')

X

def searché4letters (phrase:str, letters:str='aeiou') -> set:

Both invocations of the search4letters function on this page produce
the same result: a set containing the letters x and y. Although it may be
hard to appreciate the benefit of using keyword arguments with our small
searché4letters function, the flexibility this feature gives you becomes
clear when you invoke a function that accepts many arguments. We’ll see an
example of one such function (provided by the standard library) before the
end of this chapter.

you are here » 171

a quick

Updating What We Know About Functions

Let’s update what you know about functions now that you’ve spent some time exploring

how function arguments work:

%BULLET POINTS

= As well as supporting code reuse,
functions can hide complexity. If you
have a complex line of code you
intend to use a lot, abstract it behind
a simple function call.

= Any function argument can be
assigned a default value in the
function’s de f line. When this
happens, the specification of a value
for that argument during a function’s
invocation is optional.

As well as assigning arguments by
position, you can use keywords,

too. When you do, any ordering is
acceptable (as any possibility of
ambiguity is removed by the use of
keywords and position doesn’t matter
anymore).

work.

.
172 ‘

These functions really
hit the mark for me.
How do I go about using
and sharing them?

There’s more than one way to do it.

Now that you have some code that’s worth
sharing, it is reasonable to ask how best to use
and share these functions. As with most things,
there’s more than one answer to that question.
However, on the next pages, you’ll learn how best
to package and distribute your functions to ensure
it’s easy for you and others to benefit from your

Functions Beget Modules

Having gone to all the trouble of creating a reusable function (or two, as is the
case with the functions currently in our vsearch.py file), it is reasonable to ask:
what’s the best way to share functions?

It is possible to share any function by copying and pasting it throughout your
codebase where needed, but as that’s such a wasteful and bad idea, we aren’t
going to consider it for very much longer. Having multiple copies of the same
function littering your codebase is a sure-fire recipe for disaster (should you ever
decide to change how your function works). It’s much better to create a module
that contains a single, canonical copy of any functions you want to share. Which
raises another question: how are modules created in Python?

The answer couldn’t be simpler: a module is any file that contains functions.
Happily, this means that vsearch. py is already a module. Here it is again, in all
its module glory:

[] & vsearch.py - /Users/Paul/Desktop/_NewBook/ch04/vsearch.py (3.4.3)

code

module

Share your
functions
in modules.

def searchdvowels (phrase:str) -> set:

vowels = set('aeiou')
return vowels.intersection (set (phrase))

return set(letters).intersection(set(phrase))

"""Return any vowels found in a supplied phrase."""

def searchd4letters (phrase:str, letters:str='aeiou')
"""Return a set of the 'letters' found in 'phrase'.

-> set:

Ln: 10 Col: D

“vsearth.p " tontains (:unc{','lons n
;S‘C(:'l\c, me:lking it a ‘(:u“\/ formed

modu\c-
Creating modules couldn’t be easier, however...

Creating modules 1s a piece of cake: simply create a file of the functions you want
to share.

Once your module exists, making its contents available to your programs is also
straightforward: all you have to do is import the module using Python’s import
statement.

This in itself 1s not complex. However, the interpreter makes the assumption that
the module in question is in the search path, and ensuring this is the case can
be tricky. Let’s explore the ins and outs of module importation over the next few

pages.

173

where’s my

How Are Modules Found?

Recall from this book’s first chapter how we imported and then used the
randint function from the random module, which comes included as part
of Python’s standard library. Here’s what we did at the shell:

ﬁ >>> import random

lda\bﬁy +he module

What happens during module importation is described in great detail in the
Python documentation, which you are free to go and explore if the nitty-
gritty details float your boat. However, all you really need to know are the
three main locations the interpreter searches when looking for a module.
These are:

o Your current working directory
This is the folder that the interpreter thinks you are currently
working in.

e Your interpreter’s site-packages locations
These are the directories that contain any third-party Python
modules you may have installed (including any written by you).

e The standard library locations
These are the directories that contains all the modules that make up
the standard library.

The order in which locations 2 and 3 are searched by the interpreter can vary
depending on many factors. But don’t worry: it is not important that you
know how this searching mechanism works. What ¢s important to understand
is that the interpreter always searches your current working directory first,
which is what can cause trouble when you’re working with your own custom
modules.

To demonstrate what can go wrong, let’s run though a small exercise that is
designed to highlight the issue. Here’s what you need to do before we begin:

>>> random.randint (0, 255)

4o import, then. 42 (\'

module

...invoke one of
the module’s
Lunetions.

Geek Bits

Depending on the operating
system you're running, the
name given to a location
that holds files may be either
directory or folder. We'll use
“folder” in this book, except
when we discuss the current
working directory (which is a
well-established term).

I:l Create a folder called mymodules, which we’ll use to store your modules. It
doesn’t matter where in your filesystem you create this folder; just make sure it

1s somewhere where you have read/write access.

|:| Move your vsearch. py file into your newly created mymodules folder.
This file should be the only copy of the vsearch.py file on your computer.

174

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html

Running Python from the Command Line

We’re going to run the Python interpreter from your operating system’s
command line (or terminal) to demonstrate what can go wrong here (even
though the problem we are about to discuss also manifests in IDLE).

If you are running any version of Windows, open up a command prompt and
follow along with this session. If you are not on Windows, we discuss your
platform halfway down the next page (but read on for now anyway). You

can invoke the Python interpreter (outside of IDLE) by typing py -3 at the
Windows C : \> prompt. Note below how prior to invoking the interpreter, we
use the cd command to make the mymodules folder our current working

code reuse

module

directory. Also, observe that we can exit the interpreter at any time by typing Changc into the
{
quit () atthe >>> prompt: ("‘\/"‘°d“|€S" 1co|dc\r.

File Edit Window Help Redmond #1
Start C:\Users\Head First> cd mymodules
Python 3. :
R C: \Users\Head First\mymodules> py -3
Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 24 2015, 22:43:06)
,m?w{: the v.1600 32 bit (Intel)] on win32

[MSC

dul Type "help", "copyright", "credits" or "license" for more information.
module. —’>

>>> import vsearch
Use the >>> vsearch.searchd4vowels ('hitch-hiker')

module's —> 4 [N

>>> vsearch.search4letters('galaxy', 'xyz')

‘Fuhﬁ‘{:ions. { |y| , 'x'}
>>> quit ()
C:\Users\Head First\mymodules>
Exit the Python e

interpreter and veturn

$o your operating
sys{:cm's tommand \W‘Om\?‘{:-

This works as expected: we successfully import the vsearch module, then
use each of its functions by prefixing the function name with the name of

its module and a dot. Note how the behavior of the >>> prompt at the
command line is identical to the behavior within IDLE (the only difference is
the lack of syntax highlighting). It’s the same Python interpreter, after all.

Although this interaction with the interpreter was successful, it only worked
because we started off in a folder that contained the vsearch.py file.
Doing this makes this folder the current working directory. Based on how the
interpreter searches for modules, we know that the current working directory
1s searched first, so it shouldn’t surprise us that this interaction worked and
that the interpreter found our module.

But what happens if our module isn’t in the current
working directory?

you are here » 175

no import here

Not Found Modules Produce lmportErrors

Repeat the exercise from the last page, after moving out of the folder that contains
our module. Let’s see what happens when we try to import our module now. Here
1s another interaction with the Windows command prompt:

Start
P\/{:hon 3
aga'm.

Tey to im?or{:
the module...

>
bw{: this
time we Pc{;

an evvrovr

module

Change o another folder (in this tase,
K\ we are moving £o the top—level folder).

File Edit Window Help Redmond #2
C:\Users\Head First> cd \

C:\>py -3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named 'vsearch'
>>> quit()

C:\>

The vsearch. py file is no longer in the interpreter’s current working directory,
as we are now working in a folder other than mymodules. This means our
module file can’t be found, which in turn means we can’t import it—hence the
ImportError from the interpreter.

If we try the same exercise on a platform other than Windows, we get the same
results (whether we’re on Linux, Unix, or Mac OS' X). Here’s the above interaction
with the interpreter from within the mymodules folder on OS X:

Change into the

folder and then {:‘IP‘
“Y\/ﬂ\ongn to start =
4he interpreter.

[mport the —)

modu't-

[+ works: we —>
tan use the
modulc,S
-(:un(.{',ions.

File Edit Window Help Cupertino #1
$ cd mymodules

mymodules$ python3

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch

>>> vsearch.searchd4vowels ('hitch-hiker')

{ =R , 'e! }

>>> vsearch.searchd4letters('galaxy', 'xyz')

{ lxl ’ |yl }

>>> quit() <

mymodules$

Exit the Py{:hon infcryrcfcr and veturn o Yyour oPcra'{:ing

176 Chapter 4 system’s tommand prompt.

code reuse

lmportErrors Occur No Matter the
Platform

If you think running on a non-Windows platform will somehow fix this import
issue we saw on that platform, think again: the same ImportError occurs on
UNIX-like systems, once we change to another folder:

K\ Cha;gc to anoﬁ:c\r folder (in this ease
we are moving {5 our top—level fold '

er).
Start File Edt_Window Help _Cupertino 2

SN mymodules$ cd
again.

module

$ python3
Python 3.4.3 (v3.4.3:9b73fl1lc3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
T}y{oimWW£ Type "help", "copyright", "credits" or "license" for more information.

£he module... >>> import vsearch
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
/9 ImportError: No module named 'vsearch'
~-but this >>> quit()
time we ?cf s
an evvov!

As was the case when we were working on Windows, the vsearch. py file is no
longer in the interpreter’s current working directory, as we are now working in a
folder other than mymodules. This means our module file can’t be found, which
in turn means we can’t import it—hence the ImportError from the interpreter.
This problem presents no matter which platform you’re running Python on.

therejare no
Dumb Questions

Q: Can’t we be location specific and say something like import C:\mymodules\vsearch on Windows platforms, or
perhaps import /mymodules/vsearch on UNIX-like systems?

A: No, you can't. Granted, doing something like that does sound tempting, but ultimately won’t work, as you can't use paths in this way with

Python’s import statement. And, anyway, the last thing you'll want to do is put hardcoded paths into any of your programs, as paths can
often change (for a whole host of reasons). It is best to avoid hardcoding paths in your code, if at all possible.

Q: If I can’t use paths, how can | arrange for the interpreter to find my modules?

A: If the interpreter can’t find your module in the current working directory, it looks in the site-packages locations as well as in the standard
library (and there’s more about site-packages on the next page). If you can arrange to add your module to one of the site-packages locations,
the interpreter can then find it there (no matter its path).

you are here » 177

install into

Getting a Module into Site-packages

Recall what we had to say about site-packages a few pages back when we

introduced them as the second of three locations searched by the interpreter’s

import mechanism:

e Your interpreter’s site-packages locations

module

These are the directories that contain any third-party Python modules

which you may have installed (including any written by you).

As the provision and support of third-party modules is central to Python’s
code reuse strategy, it should come as no surprise that the interpreter comes
with the built-in ability to add modules to your Python setup.

Note that the set of modules included with the standard library is managed
by the Python core developers, and this large collection of modules has been
designed to be widely used, but not tampered with. Specifically, don’t add or
remove your own modules to/from the standard library. However, adding or
removing modules to your site-packages locations is positively encouraged, so
much so that Python comes with some tools to make it straightforward.

Using “setuptools” to install into site-packages

As of release 3.4 of Python, the standard library includes a module called
setuptools, which can be used to add any module into site-packages.
Although the details of module distribution can—initially—appear complex,
all we want to do here is install vsearch into site-packages, which 1s
something setuptools is more than capable of doing in three steps:

o Create a distribution description
This identifies the module we want setuptools to install.

e Generate a distribution file
Using Python at the command line, we’ll create a shareable
distribution file to contain our module’s code.

9 Install the distribution file
Again, using Python at the command line, install the distribution
file (which includes our module) into site-packages.

Step 1 requires us to create (at a minimum) two descriptive files for our
module: setup.py and README . txt. Let’s see what’s involved.

178

Pyt]non 3.4 (or
newer) makes using
setuptools a breeze,
I you aren’t running
3.4 (or newer),
consider upgrac[ing.

code reuse

Creating the Required Setup Files 0] Creeadinrbuion

description.

If we follow the three steps shown at the bottom of the last page, we’ll end up [] Generate a

. distribution file.
creating a distribution package for our module. This package is a single
compressed file that contains everything required to install our module into
site-packages.

I:‘ Install the
distribution file.

For Step 1, Create a distribution description, we need to create two files that we’ll /

place in the same folder as our vsearch.py file. We’ll do this no matter

what platform we’re running on. The first file, which must be called setup. We'll eheek off each

Py, describes our module in some detail. tompleted s'l:cp as we work

throuah £hi :
Find below the setup. py file we created to describe the module in the 3h this material

vsearch.py file. It contains two lines of Python code: the first line imports
the setup function from the setuptools module, while the second
invokes the setup function.

The setup function accepts a large number of arguments, many of

which are optional. Note how, for readability purposes, our call to setup

is spread over nine lines. We’re taking advantage of Python’s support for
keyword arguments to clearly indicate which value is being assigned to which
argument in this call. The most important arguments are highlighted; the first
names the distribution, while the second lists the . py files to include when
creating the distribution package:

I"‘POV{‘, the “sc{:uF"
“‘cum:*l:ion from the /\/
setuptools” module. from setuptools import setup The “ ! t
€ name argumcn
identifies the distribution. [&'s

setup (/ tommon prattice to name the
name='vsearch', distribution after the module.

version='1.0",

This is an invotation of description='The Head First Python Search Tools',
the “setup” funttion ——> author='HF Python 2e',
We've spreading its author email='hfpy2e@gmail.com',

avguments over many url='headfirstlabs.com',

lines. py_modules=['vsearch'],
| : ‘
This is a list of “py’ files to mt.\udc\m
the patkage For this example, we only
In addition to setup.py, the setuptools mechanism requires the have one: “vsearth’-

existence of one other file—a “readme” file—into which you can put a
textual description of your package. Although having this file is required,
its contents are optional, so (for now) you can create an empty file called
README. txt in the same folder as the setup . py file. This is enough to
satisfy the requirement for a second file in Step 1.

you are here » 179

setup on

Creating the Distribution File Greate « dtaion

description.

Generate a
distribution file.

I:‘ Install the

We’re now ready to create a distribution package from these files. This is Step distribution file.

[

At this stage, you should have three files, which we have put in our
mymodules folder: vsearch.py, setup.py, and README . txt.

2 from our earlier list: Generate a distribution file. We’ll do this at the command
line. Although doing so is straightforward, this step requires that different
commands be entered based on whether you are on Windows or on one of the
UNIX-like operating systems (Linux, Unix, or Mac OS X).

]]] .] . RW‘- P on
Creating a distribution file on Windows on W{f'; ’

If you are running on Windows, open a command prompt in the folder that
contains your three files, then enter this command:

C:\Users\Head First\mymodules> py -3 setup.py sdist \

The Python interpreter goes to work immediately after you issue this .. and pass
command. A large number of messages appear on screen (which we show .E"“Cl‘-u{:c the tode “sist” as an
here in an abridged form): n Sc'b"F-P)’"..‘ ar%umcy\{;

running sdist
running egg_info
creating vsearch.egg-info

creating dist

creating 'dist\vsearch-1.0.zip' and adding 'vsearch-1.0' to it
adding 'vsearch-1.0\PKG-INFO'

adding 'vsearch-1.0\README. txt'

adding 'vsearch-1.0\vsearch.egg-info\top level.txt'

removing 'vsearch-1.0' (and everything under it) (\

When the Windows command prompt reappears, your three files have £ You see this messy
been combined into a single distribution file. This is an installable file all is well. I£ you oL 9e,
that contains the source code for your module and, in this case, is called errors, theek ‘(:ha'?
vsearch-1.0.zip. You're running at least
You’ll find your newly created ZIP file in a folder called dist, which has also Pyﬂw" 3.4, and also
been created by setuptools under the folder you are working in (which is "‘a”kc sure Your “sc{:uy.
mymodules in our case). Pyr file is identical 4o
ours.

180

code

Pistribution Files on UNIX-like 0Ses [Crocadissbuion

description.

If you are not working on Windows, you can create a distribution file in much Generate a

the same way as on the previous page. With the three files (setup.py, Istall

. . . nstall the
README .txt,and vsearch. .py) in a folder, issue this command at your] distribution file.
operating system’s command line:

[

distribution file.

[‘ Run P)"H\on 3
mymodules$ python3 setup.py sdist \

...and pass
.Ex.fc"f‘ the code “sdist” as an
in Sch‘P'F)’"W argumt'\h

Like on Windows, this command produces a slew of messages on screen:

running sdist
running egg_info
creating vsearch.egg-info

running check
creating vsearch-1.0
creating vsearch-1.0/vsearch.egg-info

creating dist
Creating tar archive

removing 'vsearch-1.0’ (and everything under it) éﬁ

When your operating system’s command line reappears, your three files have The messages diffey
been combined into a source distribution file (hence the sdist argument 5“5"\‘(‘.')’ from those
above). This 1s an installable file that contains the source code for your Produted on Windows.
module and, in this case, is called vsearch-1.0.tar.gz. [You see this message,

all is well. I£ not (as
with Windows) double—
theek cvcv-y'(:hing‘

You’ll find your newly created archive file in a folder called dist, which
has also been created by setuptools under the folder you are working in
(which is mymodules in our case).

With your source distribution file created (as a ZIP or as
a compressed tar archive), you’re now ready to install
your module into site-packages.

181

ready to install

Installing Packages with “pip” [Crestea dssoion

description.

Generate a

[<]

Now that your distribution file exists as a ZIP or a tarred archive (depending on your
platform), it’s time for Step 3: Install the distribution file. As with many such things,
Python comes with the tools to make this straightforward. In particular, Python 3.4 L] g:iﬁ&ﬁzn file
(and newer) includes a tool called pip, which is #e Package Installer for Python.

distribution file.

Step 3 on Windows

Locate your newly created ZIP file under the dist folder (recall that the file is Run Py{:hoh 3 with the modul
called vsearch-1.0. zip). While in the Windows Explorer, hold down the Shift PiP, and then ask pip 4o ing Jc;”‘
key, then right-click your mouse to bring up a context-sensitive menu. Select Open the identified ZIP file.

command window here from this menu. A new Windows command prompt opens. At this
command prompt, type this line to complete Step 3:

C:\Users\...\dist> py -3 -m pip install vsearch-1.0.zip

If this command fails with a permissions error, you may need to restart the command
prompt as the Windows administrator, then try again.

When the above command succeeds, the following messages appear on screen:

Processing c:\users\...\dist\vsearch-1.0.zip

Installing collected packages: vsearch
Running setup.py install for vsearch

Successfully installed vsearch-1.0

Run Python 3 i
| Ython 3 with the
Suttess! module pip, and then ask

Step 3 on UNIX-like 0Ses PP to install the identifieg
ompressed {ar file.
On Linux, Unix, or Mac OS X, open a terminal within the newly created dict folder,

and then issue this command at the prompt:

.../dict$ sudo python3 -m pip install vsearch-1.0.tar.gz

When the above command succeeds, the following messages appear on screen:

Processing ./vsearch-1.0.tar.gz “WC a”rc using the
Installing collected packages: vsearch sudo Command heye
Running setup.py install for vsearch ensure we instal|

with the torveet

VELLCSS! Permissions.

The vsearch module is now installed as part of site-packages.

Successfully installed vsearch-1.0

182 Chapter 4

Modules: What We Know Already

Now that our vsearch module has been installed, we can use import vsearch
in any of our programs, safe in the knowledge that the interpreter can now find the
module’s functions when needed.

If we later decide to update any of the module’s code, we can repeat these three steps
to install any update into site-packages. If you do produce a new version of your
module, be sure to assign a new version number within the setup. py file.

Let’s take a moment to summarize what we now know about modules:

code

IZI Create a distribution
description.

|zl‘ Generate a

distribution file.

|ZI Install the

distribution file.

All done/

%BUI.I.ET POINTS

= You can share a module by
ensuring it is always available with
the interpreter’s current working
directory (which is possible, but
brittle) or within the interpreter’s site-
packages locations (by far the better
choice).

= Amodule is one or more functions = Following the setuptools

saved in a file. three-step process ensures that
your module is installed into site-
packages, which allows you to
import the module and use its
functions no matter what your current
working directory happens to be.

Giving your code away (a.k.a. sharing)

Now that you have a distribution file created, you can share this file with other Python
programmers, allowing them to install your module using pip, too. You can share
your file in one of two ways: informally, or formally.

To share your module informally, simply distribute it in whatever way you wish and to
whomever you wish (perhaps using email, a USB stick, or via a download from your
personal website). It’s up to you, really.

To share your module formally, you can upload your distribution file to Python’s
centrally managed web-based software repository, called PyPI (pronounced “pie-
pee-eye,” and short for the Python Package Index). This site exists to allow all manner
of Python programmers to share all manner of third-party Python modules. To
learn more about what’s on offer, visit the PyPI site at: https://pypi.python.org/
pypi. To learn more about the process of uploading and sharing your distribution
files through PyPI, read the online guide maintained by the Python Packaging Authority,
which you’ll find here: https://www.pypa.io. (There’s not much to it, but the
details are beyond the scope of this book.)

We are nearly done with our introduction to functions and modules. There’s just a
small mystery that needs our attention (for not more than five minutes). Flip the page
when you’re ready.

Any Pytlton
programmer
can also use
PiP to install
your module.

183

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://www.pypa.io/

copy or

Five Minufe
Mystery

- Geek Bﬂs

The case of the misbehaving function arguments

Tom and Sarah have just worked through this chapter, and are now arguing
over the behavior of function arguments.

Tom is convinced that when arguments are passed into a function, the data
is passed by value, and he’s written a small function called double to
help make his case. Tom’s double function works with any type of data
provided to it.

Here’s Tom’s code:

def double (arqg):

print ('Before: ', arg)
arg = arg * 2
print ('After: ', arg)

Sarah, on the other hand, is convinced that when arguments are passed into
a function, the data is passed by reference. Sarah has also written a small
function, called change, which works with lists and helps to prove her point.

Here’s a copy of Sarah’s code:

def change (arqg):

print ('Before: ', arg)
arg.append('More data')
print ('After: ', arqg)

We’d rather nobody was arguing about this type of thing, as—until now—
Tom and Sarah have been the best of programming buddies. To help resolve
this, let’s experiment at the >>> prompt in an attempt to see who is right:

“by value” Tom, or “by reference” Sarah. They can’t both be right, can they?

It’s certainly a bit of a mystery that needs solving, which leads to this often-
asked question:

Do function arguments support by-value or
by-reference call semantics in Python?

In case you need a quick refresher, note that by-value argument passing refers to the practice of using the value of
a variable in place of a function’s argument. If the value changes in the function’s suite, it has no effect on the value
of the variable in the code that called the function. Think of the argument as a copy of the original variable’s value.
By-reference argument passing (sometimes referred to as by-address argument passing) maintains a link to the
variable in the code that called the function. If the variable in the function’s suite is changed, the value in the code
that called the function changes, too. Think of the argument as an alias to the original variable.

184

code reuse

Pemonstrating Call-by-Value Semantics

To work out what Tom and Sarah are arguing about, let’s put their functions into
their very own module, which we’ll call mystery.py. Here’s the module in an
IDLE edit window:

® O @ mystery.py - sers/Paul/Deskiop/_NewBook/ch04/mystery.py (3.5.0)

. def double(arg):
T“‘Sf J"jw° (:r:“d:ons L print('Begore: ', arg) This function
are smn\a.v- ‘35 arg = arg * 2 <«— doubles the _
?:‘5 :n:“?i;\’\a\/s it print('After: ', arg) value passed in-
Y Oum)
1 S
?Lsfgiit,atjn&u:itc def change(arg): This furo
displays it on streen print('Before: ', arg) 5 is Tunttion
a03in arg.append('More data') (<— E?‘"ds a
) print('After: ', arg) string to any
Passed in list.

Ln: 11 Fiol: 0

As soon as Tom sees this module on screen, he sits down, takes control of the
keyboard, presses I5, and then types the following into IDLE’s >>> prompt.
Once done, Tom leans back in his chair, crosses his arms, and says: “See? I told
you it’s call-by-value.” Take a look at Tom’s shell interactions with his function:

>>> num = 10

>>> double (num)

Before: 10

After: 20 Each invoeation ¢on Livms
Tom imvckes >>> num N jliha{: the value passed
the “double” 10 oy o6 3n drgument is
Lunetion >>> saying = 'Hello ' anged within the

{:) N
three times —> >>> double (saying) unttion's suite, but

that the value at
onte with an Before: Hello shell Vrcmainsu:nchai:;:d

1n£c3€*_€:l:c, After: Hello Hello / That o1 the frontrd
’cEQ" wa“d >>> saying arguments appear 4o
ic-,::ia; with 'Hello ' eonform 4o eall-by-value

semanties.
a list. >>> numbers = [42, 256, 16]
L—? >>> double (numbers)
Before: [42, 256, 16]
After: [42, 256, 16, 42, 256, 16]
>>> numbers

[42, 256, 16] you are here » 185

over to sarah

Pemonstrating Call-by-Reference Semantics

Undeterred by Tom’s apparent slam-dunk, Sarah sits down and takes control of the
keyboard in preparation for interacting with the shell. Here’s the code in the IDLE
edit window once more, with Sarah’s change function ready for action:

The is the

« m\ls.tcy-\l.‘?\ln
modu\c- 1%

@ O @ mystery.py - sers/Paul/Deskiop/_NewBook/ch04/mystery.py (3.5.0)

def doublelarg):
print('Before: ', arg)

arg = arg * 2 }-""‘:{_‘Oh

print('After: ', arg) un
def change(arg):

print('Before: ', arg)

arg.append('More data') 6e— Sarah’s

print('After: ', arg) unttion

Sarah types a few lines of code into the >>> prompt, then leans back in her
chair, crosses her arms, and says to Tom: “Well, if Python only supports call-
by-value, how do you explain this behavior?” Tom is speechless.

Take a look at Sarah’s interaction with the shell:

ﬁ\>

Using the same
list data as Tom,
Sarah invokes
hev “change”
funttion.

This us strange behavior.

>>> numbers = [42, 256, 16]
>>> change (numbers)
Before: [42, 256, 16]
After: [42, 256, 16,
>>> numbers

[42, 256, 16,

'More data']

'"More data']

N

Tom’s function clearly shows call-by-value argument semantics, whereas
Sarah’s function demonstrates call-by-reference.

How can this be? What’s going on here? Does Python support both?

186 Chapter 4

Ln: 11 Eol: 0

Look what’s happened!
This time the argument’s
value has been thanged in
the funetion as well as at
the shell. This would seem
1o suggest that Python
unttions *3lso¥ suPPo\r‘l:
Ca”—by—rcfcrcnce semanties.

code

Solved: the case of the misbehaving function arguments

Do Python function arguments support by-value or by-reference call semantics?

Here’s the kicker: both Tom and Sarah are right. Depending on the situation, Python’s function argument
semantics support both call-by-value and call-by-reference.

Recall once again that variables in Python aren’t variables as we are used to thinking about them in other
programming languages; variables are object references. It is useful to think of the value stored in the
variable as being the memory address of the value, not its actual value. It’s this memory address that’s passed
into a function, not the actual value. This means that Python’s functions support what’s more correctly called
by-object-reference call semantics.

Based on the type of the object referred to, the actual call semantics that apply at any point in time can differ.
So, how come in Tom’s and Sarah’s functions the arguments appeared to conform to by-value and by-reference
call semantics? First off, they didn’t—they only appeared to. What actually happens is that the interpreter looks
at the type of the value referred to by the object reference (the memory address) and, if the variable refers to a
mutable value, call-by-reference semantics apply. If the type of the data referred to is imnmutable, call-by-

F

value semantics kick in. Consider now what this means for our data.

Lists, dictionaries, and sets (being mutable) are always passed into a function by reference—
any changes made to the variable’s data structure within the function’s suite are reflected in
the calling code. The data is mutable, after all.

e Minuge
Mystery
S@]Ved

Strings, integers, and tuples (being immutable) are always passed into a function by value—
any changes to the variable within the function are private to the function and are not
reflected in the calling code. As the data is immutable, it cannot change.

Which all makes sense until you consider this line of code:
arg = arg * 2

How come this line of code appeared to change a passed-in list within the function’s suite, but when the list
was displayed in the shell after invocation, the list hadn’t changed (leading Tom to believe—incorrectly—that
all argument passing conformed to call-by-value)? On the face of things, this looks like a bug in the interpreter,
as we've just stated that changes to a mutable value are reflected back in the calling code, but they aren’t here.
That is, Tom’s function didn’t change the numbers list in the calling code, even though lists are mutable. So,
what gives?

To understand what has happened here, consider that the above line of code is an assignment statement.
Here’s what happens during assignment: the code to the right of the = symbol is executed first, and then
whatever value is created has its object reference assigned to the variable on the left of the = symbol. Executing
the code arg * 2 creates a new value, which is assigned a new object reference, which is then assigned to the
arg variable, overwriting the previous object reference stored in arg in the function’s suite. However, the “old”
object reference still exists in the calling code and its value hasn’t changed, so the shell still sees the original list,
not the new doubled list created in Tom’s code. Contrast this behavior to Sarah’s code, which calls the append
method on an existing list. As there’s no assignment here, there’s no overwriting of object references, so Sarah’s
code changes the list in the shell, too, as both the list referred to in the functions’ suite and the list referred to in
the calling code have the same object reference.

With our mystery solved, we’re nearly ready for Chapter 5. There’s just one outstanding issue.

187

what about pep 8?7

Can | Test for PEP 8 Compliance?

T have a quick question before we
move on. I like the idea of writing
PEP 8 compliant code...is there any way
T can automatically check my code for
compliance?

Yes. It is possible.

But not with Python alone, as the
Python interpreter does not provide
\‘ § any way to check code for PEP 8
h compliance. However, there are a
number of third-party tools that do.

)\ Before jumping into Chapter 5, let’s
take a little detour and look at one

tool that can help you stay on the
right side of PEP 8 compliance.

188 Chapter 4

code reuse

Getting Ready to Check PEP 8 Compliance

Let’s detour for just a moment to check our code for PEP 8 compliance.

The Python programming community at large has spent a great deal of time
creating developer tools to make the lives of Python programmers a little bit
better. One such tool is pytest, which is a festing framework that is primarily
designed to make the testing of Python programs easier. No matter what type
of tests you’re writing, pytest can help. And you can add plug-ins to pytest to
extend its capabilities.

One such plug-in is pep8, which uses the pytest testing framework to check your
code for violations of the PEP 8 guidelines.

Learn more about

Recalling our code pytest from https://

Let’s remind ourselves of our vsearch. py code once more, before feeding it to c[ocs.]')ytest.org / en/
the pytest/pep8 combination to find out how PEP 8—compliant it is. Note that

we’ll need to install both of these developer tools, as they do not come installed l.atest/ .

with Python (we’ll do that over the page).

Once more, here is the code to the vsearch.py module, which is going to be
checked for compliance to the PEP 8 guidelines:

def searchéd4vowels (phrase:str) -> set: This
"""Return any vowels found in a supplied phrase.""" tode is ip
vowels = set ('aeiou') “Vsear »
= thpy".

return vowels.intersection (set (phrase))

def searchdletters (phrase:str, letters:str='aeiou') -> set:
"""Return a set of the 'letters' found in 'phrase'."""
return set (letters) .intersection (set (phrase))

Installing pytest and the pep8 plug-in

Earlier in this chapter, you used the pip tool to install your vsearch.py
module into the Python interpreter on your computer. The pip tool can also be
used to install third-party code into your interpreter.

To do so, you need to operate at your operating system’s command prompt (and
be connected to the Internet). You’ll use pip in the next chapter to install a
third-party library. For now, though, let’s use pip to install the pytest testing
framework and the pep8 plug-in.

you are here » 189

https://docs.pytest.org/en/latest/

py.test

Install the Testing Peveloper Tools

In the example screens that follow, we are showing the messages that appear when you

are running on the Windows platform. On Windows, you invoke Python 3 using the D ETOU R

py -3 command. If you are on Linux or Mac OS X, replace the Windows command

with sudo python3. To install pytest using pip on Windows, issue this command
from the command prompt while running as administrator (search for cmd. exe, then

right-click on it, and choose Run as Administrator from the pop-up menu):

py -3

-m pip install pytest

mAdmmlstrator Command Prompt | = ” =] |@

[Uersion 6.1.76011]
; rosoft Corporation. All rights reserved.

F-Windows system32>py -3 —m pip install pytest
Cullectlng pytest
Downloading pytest—2_8_7-py2 _pyd-none—any.whl (151kB>
188: [ttt gt gttt aaiiag 1558 1.3MBs
Collecting colorama <from pytestl
Downloading colorama-0.3.6—py2.pyd—none—any.whl

Collecting py>»=1.4.27 <from pytest>
Downloading py py2 .pyd-none—any.whl (81kB>
1088:: 'ﬂ#ﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂ' 86kE 131kB-=
Installing collected packages: colorama. py,. pytest
Successfully installed colorama-8.3.6 py—1.4.31 pytest-2.8.7

owswsystem3d2 >

If you examine the messages produced by pip, youw’ll notice that two of pytest’s

dependencies were also installed (colorama and py). The same thing happens when
you use pip to install the pep8 plug-in: it also installs a host of dependencies. Here’s
the command to install the plug-in:

py -3

190

-m pip install pytest-pep8

B¥ Administrate==Cima< Prompt == |@

= indows systen3d22py -3 —m pip install pytest—pepd
Collecting pytest-pepd
Downloading pytest—pep8—1.8.6.tar.gz
Collecting pytest—cache <from pytest—pepd>
Downloading pytest—cache—1.8.tar.gz
Requirement already satisfied {use ——upgrade to upgrade?: pytest>=2.4.2 in c:%pr
ogram files“spython 3.5%1libsite—packages (from pytest—pepB>
Collecting pepd>=1.3 (frnm pytedt pepd >
Downloading pepB—1 py3—none—any.whl (41kB>
1808: .##ﬂﬂ##ﬂﬂ##ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂ##ﬂﬂ##ﬂﬂﬂ#ﬂﬂ 45kE 174kB-=s
Collecting execnet>=1.1.devl <from pytest—cache—>pytest—pepd)
Douwnloading execnet—-1.4.1-py2 . pyd—none— any. whl (48kB>
188 'ﬂ#ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂﬂ#ﬂﬂ 48kE 174kB-=
Requirement already satisfied <use —upgrade to upgrade?: py>=1.4.2% in c:“proge
am filesspython 3.5%\1ibN\site—packages <(from pytest>=2.4.2->pytest—pepd>
Requirement already satisfied (use —upgrade to upgrade?: colorama in c:“program
filesspython 3.5%lib“site-—packages {(from pytest>=2_4_2->pytest—pepd)
Collecting apipkg>=1.4 (from execnet>=1.1.devi->pytest-cache—>pytest—pepdd
Downloading apipkg—1.4—puy2_ py3—-none—any.uwhl
Installing collected packages: apipky,. execnet, pytest-cache,. pepd,. pytest—pepd
Running setup.py install for pytest—cache ... dune
Running setup.py install for pytest—-pep8 ... don
Succes;fgléyslnﬂtalled apipkg-1.4 execnet—1.4.1 pepB 1.7.8 pytest—cache—1.8 pyte
st—pepd-1.8.

G~ UWindows™zs

How PEP 8-Compliant Is Qur Code?

With pytest and pep8 installed, you’re now ready to test your code for PEP 8
compliance. Regardless of the operating system you’re using, you’ll issue the same
command (as only the installation instructions differ on each platform).

The pytest installation process has installed a new program on your computer
called py . test. Let’s run this program now to check our vsearch. py code for
PEP 8 compliance. Make sure you are in the same folder as the one that contains
the vsearch.py file, then issue this command:

py-test --pep8 vsearch.py

Here’s the output produced when we did this on our Windows computer:

EX C\Windows\system32\emd. exe

;iatful-m wini2 Python 3.5.8, pytest-2.8.7,. py—1.4.31) pluggy-B8.3.1

rootdir: E:»_MNewBookwchB4, inifile:
pluginz: pepd-1_.8.6
collected 1 items

vzearch.py F

E:%_MewBookschB4suvszearch.py:2:25: E231 missing whitespace after
def search‘luuwels(p}u-aseistr) —» =met:

E:~_HNewuBookschB4“vsearch.py:3:56: W291 trailing whitespace
"""Return any vowels found in a supplied phrase.™"™

E:»_MewBook-chB4*vsearch.py:7:1: E382 expected 2 bhlank lines, found 1

ﬂef searchdletters{phrase:str, lettersistr="aeioun’> —->» set:
E:~_MewBook»chB4 vuzearch.py:7:26: E231 miszszing whiteszpace after *:’
def search‘lletters(pllraseistr, letters:str="aeioun’> —> set:

I |

E:%_MewBookschB4suvzearch.py:7:37: E231 missing whitespace after
def zearchdletterz{phrase:styr, letters:str="aeiou'd - =zet:

=5
e

E:~_MewBook-chB@4d>

Whoops! It looks like we have failures, which means this code is not as compliant
with the PEP 8 guidelines as it could be.

Take a moment to read the messages shown here (or on your screen, if you are
following along). All of the “failures” appear to refer—in some way—to whitespace
(for instance, spaces, tabs, newlines, and the like). Let’s take a look at each of them
in a little more detail.

code

DETOUR

191

py.test --pep8

Understanding the Failure Messages

Together, pytest and the pep8 plug-in have highlighted fwe issues with our

vsearch.py code. DETOUR

The first issue has to do with the fact that we haven’t inserted a space after the :
character when annotating our function’s arguments, and we’ve done this in three
places. Look at the first message, noting pytest’s use of the caret character (*) to
indicate exactly where the problem is:

HC\"c)s

)

...:2:25: E231 missing whitespace after ':' €&—— what's

def searchédvowels (phrase:str) -> set: Wrong.

A HCV‘C‘S wheve
v ‘.{;’s wrong.

If you look at the two issues at the bottom of pytest’s output, you’ll see that
we’ve repeated this mistake in three locations: once on line 2, and twice on line 7.
There’s an easy fix: add a single space character afier the colon.

The next issue may not seem like a big deal, but is raised as a failure because the
line of code in question (line 3) does break a PEP 8 guideline that says not to
include extra spaces at the end of lines:

What's wrong

/

...:3:56: W291 trailing whitespace
"""Return any vowels found in a supplied phrase."""
A \

Wheve it's wrong
Dealing with this issue on line 3 is another easy fix: remove all trailing whitespace.

The last issue (at the start of line 7) is this:

...7:1: E302 expected 2 blank lines, found 1

def searchd4letters (phrase:str, letters:str='aeiou') -> set:
A

; This issue presents at the start of line 7. Here's what's wrong,

There is a PEP 8 guideline that offers this advice for creating functions in a

module: Surround top-level function and class definitions with two blank lines. In our code, BTW: Check out

the search4vowels and search4letters functions are both at the “top ltttp‘//}’ep&org/ for a

level” of the vsearch.py file, and are separated from each other by a single 1, Sull Jered

blank line. To be PEP 8—compliant, there should be #wo blank lines here. eautitu y rendere
version of Python's

Again, it’s an easy fix: insert an extra blank line between the two functions. Let’s apply L del
these fixes now, then retest our amended code. Sty e guidelines.

192

http://pep8.org/

code

Confirming PEP 8 Compliance

With the amendments made to the Python code in vsearch.py, the file’s

contents now look like this: D ETO U R

def searché4vowels (phrase: str) -> set:
"""Return any vowels found in a supplied phrase.™""
vowels = set('aeiou')
return vowels.intersection (set (phrase))

def searchd4letters (phrase: str, letters: str='aeiou') -> set:
"""Return a set of the 'letters' found in 'phrase'."""
return set (letters).intersection (set (phrase))

When this version of the code is run through pytest’s pep8 plug-in, the output
confirms we no longer have any issues with PEP 8 compliance. Here’s what we
saw on our computer (again, running on Windows):

BN C\Windows'system32icmd.exe =naa @

E:~_HNewBookschB4>py.test —pepd vsearch.py

test session starts
platform win32 —— Python 3.5.68, pytest-2.8.7. py—1.4.31,
rootdir: E:»_MewBookschB4, inifile:
plugins: pep8-1.08.6
collected 1 items

vzsearch.py .

== 1 passed in B.B6 seconds

E:_MewBook~chB4>

Conformance to PEP 8 is a good thing

If you’re looking at all of this wondering what all the fuss is about (especially over
a little bit of whitespace), think carefully about why you’d want to comply to PEP
8. The PEP 8 documentation states that readability counts, and that code is read
much more often than it is written. If your code conforms to a standard coding style, it
follows that reading it is easier, as it “looks like” everything else the programmer
has seen. Consistency is a very good thing,

From this point forward (and as much as is practical), all of the code in this book
will conform to the PEP 8 guidelines. You should try to ensure your code does too.

193

the code

Chapter 4's Code

This is the tode

def searchdvowels (phrase: str)

"""Returns the set of vowels found in 'phrase'."""
return set('aeiou').intersection (set (phrase))

def searché4letters(phrase: str,
"""Returns the set of 'letters' found in
return set (letters).intersection (set (phrase))

vom the “vsearch.py”
module, whith tontains
“ow two ‘cum‘:(:ionst
“scav-ch‘}'vowcls" and
searchdletters”.

letters: str='aeiou') -> set: é———/’///
lphrasel . mmwn

-> set:

This is the “setup-
Py file, which
allowed us to
fuen our module
into an installable
distribution.

<

from setuptools import setup

setup (
name="'vsearch',
version='1.0",
description='The Head First Python Search Tools',
author="'HF Python 2e',
author email='hfpy2e@gmail.com',
url='headfirstlabs.com',
py modules=['vsearch'],

def double (arg) :
print ('Before:
arg = arg * 2

', arg) And this is the “m\/s{ery.yy"
module, which had Tom and

rint ("After: ', ar
print 9) Sarah upset at each other.
S Thankfully, now that the
def change(arg: list): mydxryissohcd,fhcyarc
print ('Before: ', arg) back being Programming
arg.append ('More data') buddics onte more. ©
print ('After: ', arqg)

194 Chapter 4

	Title page
	Copyright
	Table of Contents
	Intro
	Chapter 1: The Basics
	Chapter 2: List Data
	Chapter 3: Structured Data
	Chapter 4: Code Reuse

